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Abstract

In this work, we show first quantitative and qualitative
results proving the viability of IF-Nets for reconstruction
of large, complex scenes. Furthermore, we extend IF-Nets
with a depth regressor and differential voxelization to en-
able an end-to-end trainable 3D scene prediction network.
The aim is combine their ability to complete partial, incom-
plete inputs to watertight meshes, while retaining local and
global details, with the ability to generate those partial in-
puts autonomously from RGB images.

1. Introduction

Efforts involving 3D scene prediction date back to the
60s [7], but the subject remains a difficult and unfinished
task. Indeed, “the inherent ambiguity in depth percep-
tion, the clutter and complexity of real-world environments
make it still challenging to fully recover the scene context
(both semantics and geometry) merely from a single im-
age” [6]. Especially in recent years, the topic has received
enormous interest from researchers in both computer vision
and graphics communities, with many different approaches
being explored simultaneously. Currently, implicit repre-
sentations of 3D geometry and material properties have
achieved state of the art results on staple data-sets such as
Shapenet [1]. These methods are of special interest, as they
promise to solve memory and resolution issues of discrete
occupancy methods [2].

In this work, we are focusing on reconstructing scenes
from a single image. We make the use of IF-Net [2] which
focuses on shape completion from an incomplete 3D input.
We explore the usage of IF-Net in the task of 3D reconstruc-
tion from images. We also explore its ability to work on
complex scenes instead of simple shapes as was proposed
in the paper.

2. Method

An overview of the pipeline can be seen in Fig. 1.
The task is to reconstruct 3D scenes from an rgb image.

Our pipeline is a two-part architecture. The first part is a
UNet [8] that learns to predicts a depth map from an rgb
image input. The predicted depth map is voxelized into an
incomplete occupancy grid. This grid is then fed into the
second part, IF-Net [2], which learns to complete incom-
plete data using extra supervision as points sampled from
the ground truth mesh along with their occupancy. We make
use of differentiable voxelization proposed by [4] to train
the pipeline end-to-end.

2.1. Depth regressor

Inspired by the work of [9], we use a UNet [8] as the
depth estimator. The UNet has 8 downsampling and up-
sampling layers. UNet feature concatenation allows us to
get a more precise depth estimation.

The feature concatenation in the upsamling layers puts
a restriction on the input size. To use the full 8 layers of
the UNet, we had to resize the rgb image input. First, the
image is square padded with zeros and then resized to a size
of 256 × 256. After the UNet predicts the depth, we resize
it back to the original image size and discard the padding.
Resizing it back is important as the camera intrinsic is tied
to the image size.

Following this, a sigmoid layer and a renormalization
step are applied so that the predicted depth values lies within
the minimum and maximum values of our dataset.

2.2. Projection into 3D

Using the depth map and camera intrinsics, we project
the 2D image points into 3D. Next, we need to discretize
the 3D space into a voxelized occupancy grid. This step
can be viewed as a step function where the occupancy of
each voxel is determined by whether a point lies inside of it
or not. As this process is not differentiable, we needed an
alternative method to allow the gradient to flow back to the
UNet and to train the full pipeline end-to-end.

We made use of the method in [4] to make this process
differentiable. Instead of voxelizing points via their dis-
crete position, we smooth their density over a region with
a Gaussian distribution. The resulting voxelization is then
the clipped sum of smoothed points evaluated at the voxel
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Figure 1. Overview of the full pipeline

grid points.
Assume the point cloud is a set of N points P =

{xi}Ni=1, each including the point position xi = (xi, yi, zi).
To allow the gradient to flow, we apply Gaussian densities
fi to each point xi. The occupancy function of a point in 3D
space is a clipped sum of the individual per-point functions:

o(x) = clip(

N∑
i=1

fi(x), [0, 1]), (1)

fi(x) = ci exp
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3) ∈ R3×3 is a diagonal co-

variance matrix of the Gaussian and ci defines the scale of
each one. We use the occupancy function o(x) to obtain
the discretized grid X ∈ RN×N×N , where N ∈ N denotes
the required grid resolution. The grid values are now in the
range [0, 1] instead of 0’s and 1’s.

As for the implementation details, first we apply trilinear
interpolation on all points to place them on a grid. Then, we
a apply 3D convolution over the grid with Gaussian kernels.
The 3D convolutions are in the form of three 1D convolu-
tions along each axis for improved efficiency. The restric-
tion of this implementation is that the covariance Σi is fixed
for all functions fi. We also implemented the covariance
parameters {σ2

i }3i=1 to be learnable as it was shown in [4]
to perform better than hand-tuned.

2.3. Implicit functions

We use the IF-Net architecture proposed by [2]. The
goal of this network is to learn a function that, given the
voxelized grid X and a point p, determines the occupancy
of the point.

Shape Encoding: We apply subsequent 3D convolu-
tions on the voxelized grid each of which is followed by
a down scaling layer. We concatenate the features at each
level to obtain a set of features at multiple scales. These
features encode the global and local structure of the scene.

The encoder is denoted as

g(X) := F1, ..,Fn, (2)

where the feature grid at stage k Fk ∈ FK×K×K
k , of

decreasing resolution K = N
2k−1 , and variable channel

dimensionality Fk ∈ N at each stage Fk ⊂ RFk .

Shape Decoding: We extract the features at the location
of the query point p and at its neighborhood defined by a
distance d along the Cartesian axes:

{p + a.ei.d ∈ R3|a ∈ {1, 0,−1}, i ∈ {1, 2, 3}}, (3)

where d ∈ R is a hyper-parameter that defines the distance
to p and e ∈ R3 is the i− th Cartesian axis unit vector.

These extracted encodings of the point p
F1(p), ...,Fn(p) are fed into a fully connected net-
work f(.) to determine the occupancy of the point:

f(F1(p), ...,Fn(p)) : F1 × ...×Fn 7→ [0, 1] (4)

2.4. Method Training

During training, If-Net is fed points from two sources:
Ground truth mesh sampling: As a preprocessing step,
transform the ground truth distance field into a mesh using
the marching cubes algorithm. We make this mesh water-
tight meaning that it’s a continuous surface devoid of holes.
Then, we sample points from the mesh with a predefined
variance and determine the occupancy of each. These points
serve as extra supervision to allow the IF-Net to train better.

Point cloud: For each point in the point cloud P ob-
tained from the projection layer, we compute the occupancy
using the ground truth mesh. Using all the points in the
point cloud P is redundant and greatly increased our com-
putation and memory usage. Hence, we sample a subset of
these points randomly for supervision.
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2.5. Method Inference

During testing, the IF-Net is evaluated on points on a grid
of the desired resolution. We can obtain high resolution re-
sults as we can query the IF-Net at an arbitrary resolution.
Then, using the marching cubes algorithm, the resulting oc-
cupancy grid can be transformed into a mesh.

3. Experiments
So far, IF-Net has shown great results for shape comple-

tion of single objects and people. This work explores it’s
potential for single view 3D-scene reconstruction of com-
plex indoor scenes. We prove 1) its feasibility of complet-
ing large scenes with a GT depth map, that is being differ-
entially voxelized to create the necessary inputs, and 2) re-
sults, merits and limitations of generating these depth maps
online via depth regressor.

3.1. Experimental setup

Data: Our data-set, 3D Front [3], consists of synthetic
indoor scenes, rendered into RGB images in blender. This
provides us with ground truth depthmaps, ground truth dis-
tance fields and camera intrinsic. As a pre-processing step,
we extract singular GT meshes of the scenes from the dis-
tance fields via the marching cubes algorithm. Next, these
meshes are made watertight using the procedure from IF-
Net and OCC-Net [5]. Next, we sample 3D points in space
at a normally distributed distance from the surface of these
meshes, and since these meshes are watertight we calculate
their corresponding occupancy values [0, 1] . In the feasi-
bility experiments, we reduce the original input voxelgrid
(z = 139, y = 104, x = 112) to half scale (70, 52, 56) before
meshing to more quickly explore hyper-parameter configu-
rations and resulting mesh quality. After having performed
an ablation study for the half scale inputs, we evaluate the
results of our fully end-to-end trained network on full scale.
The half scale data-set consists of 703 training samples, 118
validation and 118 test samples. The full scale studies train
on 2753 samples and evaluate on 291 val and 291 test sam-
ples.

Metrics: We follow the lead of the authors of IF-Net to
measure the reconstruction quality quantitatively and eval-
uate the meshes with these three established metrics: volu-
metric intersection over union (IoU) measuring the spatial
overlap of the volumes (higher is better), Chamfer-L2 dis-
tance, to measure the accuracy and completeness of the sur-
face (lower is better), and normal consistency measuring the
accuracy and completeness of the shape normals (higher is
better).

Baseline: The main goal is to investigate feasibility of
the proposed method. We are not aware of any other works
for 3D Scene reconstruction using 3D Front [3], hence we
will compare the proposed metrics with the original results

of IF-Net on the ShapeNet [1] data-set to quantitatively
evaluate the mesh quality of the viability, pretrained-UNet
and end-to-end experiments.

3.2. Configuration

Hyperparameters: The investigated hyper-parameters
like batch-size, learning rate and smoothing kernel-size had
a minor effect on mesh quality when reasonably configured,
we therefore decided on a learning rate of 2e-4, the largest
batch-size that fits the gpu and a Kernel-size of 3.

Smoothing covariance and kernel size: Interestingly,
using an isotropic covariance σ2I , the network learned σ
converged to just above 0.5 regardless of kernel-size, which
we interpret as the uncertainty of point positions of the order
of half a voxel in size.

Bit precision: We also investigated the effects of
mixed and full precision training. We noted that
full precision training converged more quickly to lower
validation losses. Due to a known PyTorch Bug,
’torch.nn.functional.grid sample’ (which IF-Net uses fre-
quently) runs roughly 10x faster in 32bit than in 16bit,
which led us to abandon mixed precision training for the
full training.

Training speed: Due to limited resources and compu-
tation power, the training was very slow. To speed up the
training without compromising the results, we implemented
scaling of the occupancy grid that is fed as input to the
IF-Net. Additionally, the meshing and point sampling step
needed to be run over the data for each different scale. Sec-
ond, we only used a subset of the point cloud P which
greatly reduced our memory usage. With these modifica-
tions, we were able to speed up the training by 10 times
which allowed us to experiment faster for our results.

3.3. Results

The task of single view 3D scene reconstruction is es-
pecially challenging as we aim to complete partial inputs
dimensions to a full 3D mesh. These partial inputs are
autonomously generated via the projection of a predicted
depth map into object space via camera intrinsic. In addi-
tion, these partial inputs are the approximate surface points
of complex surfaces, with added uncertainty from the depth
regressor. From this projected partial one-sided point cloud
input the network will have to infer complete 3D objects
with appropriate volumes.

As inaccuracies in the depth prediction will severely
hamper inference accuracy, we first prove feasibility by
training on the differentially voxelized GT depth map as
a first benchmark for inference. This feasibility test also
serves as a first exploration of suitable hyper-parameters
for the training of the full network later. For these ex-
periments we investigate the problem on a resized data set
(z, y, x) = (70, 52, 56), where z denotes the viewing direc-
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Figure 2. Exemplary inference results of previously unseen images. Depth regressor + differential voxelization create inputs for IF-Net.
Pretraining the depth regressor helps faster convergence. End-to-End is trained without depth supervision

tion. The network testing feasibility uses resized data and
is trained 703 training samples. We qualitatively and quan-
titatively evaluate the quality of predicted scene meshes on
singular views of the scene with an RGB image. Quanti-
tative results for voxelization from GT + IF-Net inference,
Pretrained Unet and End-to-End trained network are shown
in Table 1.

Note that testing still occurs on previously unseen data,
and that local and global details are inferred by the IF-Net.
From these first tests, Fig. 2, we determined that fine details
like chair and table geometry can in principle be inferred by
this architecture, although the quality clearly degrades with
the inaccuracy of depth prediction. Note here that the MSE
for the per pixel depth estimation was roughly 1 voxel on
average (5 cm) for the pre-trained network, and that the end-
to-end trained network was trained without depth supervi-
sion. We conclude that the latter has meaningless depth-
loss, as the network did not learn a pixel-wise depth value
but rather an occupancy encoding. The pre-trained depth
regressor is supervised with ground truth depth data dur-
ing training, to improve the accuracy of depth prediction
on unseen data and to accelerate convergence. However, as
shown, the network can be trained end-to-end without depth
supervision with sufficient accuracy, although the trade-off
seems to be speed of convergence and loss of details.

We continue to train models with and without explicit
depth supervision and will investigate per-dimension vari-
able smoothing kernel-size next. These first results indicate
that the main deficit of the here presented single view scene-
reconstruction network are inaccuracies in the generation of
the partial inputs (the voxilization of projected point-cloud),
and that occlusions and out of bounds predictions hurt their
quantitative performance, as frontal views of simple scenes
seem to yield the best results during evaluation.

IoU ↑ Chamfer
-L2
↓ Normal

-Consistency ↑

IF-Net** 0.73 0.00002 0.91
Viability* 0.48 0.0007 0.82

Pretrained UNet 0.43 0.0065 0.82
End-to-End*** 0.40 0.0094 0.77

Table 1. Results for different network sizes and depth accu-
racy. *Viability uses resized inputs and meshes. **IF-Net self-
reported evaluation on ShapeNet on similar gridsize. End-to-End
was trained without pre-training or depth supervision. Viablity
Pretrained with depth-supervision

4. Discussion and Conclusion

In this work we successfully applied IF-Nets for the task
of single view 3D reconstruction. Their ability to infer co-
herent local and global details from partial, one sided in-
puts, enables the joint depth and mesh prediction from a
single, low resolution RGB image input. We present first
quantitative and qualitative results and strongly believe, that
these, due to time and computational resource limits, not
fully optimized experiments, are motivation for further re-
search. We will continue to investigate the quantitative per-
formance of models with and without depth supervision and
different hyper-parameter settings. First experiments indi-
cate, that the uncertainty of the network learned σ can have
different values for different dimensions, and that these are
especially relevant for unsupervised training. It seems fur-
thermore, the depth uncertainty is greater than the other di-
mensions and we will therefore move to perform ablation
studies for varying smoothing coefficients and kernel sizes
for multiple dimensions to capture this additional point un-
certainty.
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