
3D Reconstruction from single RGB Images
Guided research project supervised by Prof. M. Nießner

Alexander Sheldrick
TUM

alexander.sheldrick@tum.de

Abstract

In this work we present an investigation of recent ad-
vances for implicit representations of 3D shapes for the
task of 3D reconstruction from single images, and present
a model that naturally extends to prediction of full color
RGB meshes. In this context, we present SOTA results
IoU and L2-Chamfer distance reconstruction metrics for
the ShapeNet-cars dataset, and show qualitative results for
its full color mesh outputs.

The presented architecture relies local multi-scale 2D
and 3D feature extraction, and on incorporating recent
advances for training implicit functions, especially the 1-
Cycle policy [17] and Fourier embedding of coordinates
[18]. Furthermore, the contribution of different feature
modalities (2D images, 3D colored density voxels) are
quantitatively and qualitatively evaluated. Using multi-
ple feature modalities shows distinctive advantages over
related works, i.e. higher visual clarity of reconstructed
meshes and lower memory requirement during training.

1. Introduction
Extracting precise geometry from singular views is si-

multaneously a problem of immense popular interest, and
an ill posed one. Indeed, “the inherent ambiguity in depth
perception, the clutter and complexity of real-world envi-
ronments make it still challenging to fully recover the scene
context (both semantics and geometry) merely from a sin-
gle image” [11]. In recent years however, with an increas-
ing need for digital assets, the topic has received a surge of
interest.

In 2019, with different contemporaneous works [9, 12]
presenting implicit functions as a promising alternative to
classical explicit modeling of 3D scenes, whose memory re-
quirements scale unfavourably with their resolution, a new
line of research opened up. Rather than explicitly repre-
senting the scene, a neural network, conditioned on shape
or more general features, implicitly regresses an occupancy
or signed distance value for a query-point. The actual geom-

etry is then extracted in post-processing by sampling over a
dense grid and applying e.g. marching cubes.

Implicit representations of 3D geometry and material
properties have achieved state of the art results on staple
data-sets such as ShapeNet [1]. These methods are of spe-
cial interest, as they promise to solve memory and resolu-
tion issues of discrete occupancy methods [2]. Lately, with
the success of differential rendering, and community efforts
to make these methods simple to use and easy to access
[14], there has been a heavy focus on stereo reconstruction
of scenes and modeling of view dependant effects via neural
radiance fields (NERF) [10].

In this work we are taking a step back and focus
on the 2019 trend of single view 3D reconstruction via
implicit functions without explicit rendering, but allow
for given ground truth depth map and camera parameters
(I, E), which could be readily extracted from modern
consumer cameras, or available from from high quality
scans. In the case that these parameters are absent, there
is a rich body of work to infer these parameters for uncal-
ibrated images [20, 7], but that is not the scope of this work.

Our contributions include the application and imple-
mentation of modern best practices for the training of neural
implicit functions on a well studied dataset, and an investi-
gation on how different feature modalities available from
single views help to address the correspondence problem,
which we aim to solve by employing 2D local (projected)
multi-scale features. Further, we explore the impact of sup-
plying additional 3D features available from the view-point,
i.e. visible points, reprojected and voxelized. Lastly, we in-
vestigate whether color information can provide additional
useful features for 3D reconstruction, and if not, if the per-
formance is substantially impacted by having the network
infer color as an additional constraint, or if a colored 3D
consistent mesh can be extracted at little extra cost.

2. Related Works
Works addressing the problem of 3D reconstruction can

be broadly categorized in their respective surface represen-

1



tations: explicit representations, i.e. meshes, voxels and
pointclouds, and implicit representations such as func-
tions and MLPs.

Voxel-based 3D representations are the natural exten-
sion from 2D images to 3D space. They allow for usage
of much of the same toolkit that ushered in the deep learn-
ing revolution and are most commonly used for 3D genera-
tion and reconstruction [19], but too suffer from the curse
of dimensionality, i.e. a memory footprint that scales cu-
bically with resolution, usually restricted to a maximum
of 1283, and a generally expensive approach to encoding
empty space. Multi-resolution approaches such as Octrees
allow for a smarter use of available memory and for grids
of sizes of up to 2563, but are generally more complicated
to implement and require multiple passes over the input.

Mesh based representations have also been considered
as output representations of 3D reconstruction [5, 8]. Un-
fortunately most approaches are prone to generating self-
intersecting meshes, are limited to simple mesh topology,
for which they require a template from the same object class
to deform, and do not produce high-quality reconstructions.

Pointclouds have shown great success for classification
and semantic segmention [13], but the earlier works did not
consider the information contained within the metric dis-
tances of points and empty space. Unlike voxels, the idea is
to apply a fully connected network to each point followed
by a global pooling operation to ensure permutation invari-
ance. Further work has sought to keep the information lost
by these operations through hierarchical grouping of points
by their metric proximity [16], but contrary to voxels and
meshes, they still require complicated post-processing to
extract geometry.

Implicit functions: In contrast to aforementioned
approaches, implicit modeling of occupancy- and truncated
signed distance fields (TSDF) ”lead to high resolution
closed surfaces without self-intersections and do not re-
quire template meshes from the same object class” [9], and
have recently achieved state-of-the-art 3D reconstruction
results.

3. Method
See fig. 1 for a qualitative introduction to signed distance

fields. We assign to every point p a value S indicating the
metric distance to the closest surface, and a sign, to dis-
criminate points lying inside the object (red) or outside the
object (blue). The zero level-set, i.e. the objects surface, is
depicted in white.

The network, conditioned on some form of input, is
taught to output a scalar value for every query point. The
reconstruction is then done by point-wise SDF prediction
on a 3D query grid. With a value for every point on
the grid, a mesh can be extracted via marching cubes in

Figure 1. Depiction of a signed distance field in a scene. (a) Cross-
section through object center. Note that the object surface traces
the white, zero-level outline. (b) SDF portrayed within object in
3D space. Negative values in red (inside: S < 0), zero in white
(object surface: S = 0) and positive in blue (outside: S > 0).

post-processing. In our work, the task is to reconstruct
colored 3D meshes from a single RGB image. Given a
point in 3D space, the presented neural network implicitly
regresses 4 values (S, RGB) conditioned on an image (2D
features) and optionally conditioned on voxelized points
from the visible surface of the depicted object (3D features).

3.1. Fourier Feature embedding

Fourier embedding [18] have shown that mapping low
dimensional coordinates to a high dimensional space via
a simple Fourier mapping allows networks to learn high-
frequency functions in low-dimensional problem domains.
Preliminary testing on the proposed architecture has shown
an enormous speedup for training until convergence with
a simultaneous increase in performance. While we refer
to the aforementioned work for a detailed explanation, the
simple explanation is that the network learns a shift equiv-
ariant prior for point coordinates. We therefore map every
3D point p to a higher dimensional feature space with the
following point-embedding transformation γ (p):

γ(p) = [cos(2πBp), sin(2πBp)], (1)

B denotes a random Gaussian matrix whose entries are
drawn independently from a normal distribution N(0, σ2).
The two hyper-parameters for this transformation are the
embedding size, 256 for all our experiments, and the scale
parameter σ, which we set to 0.8 from initial experiments.
The magnitude of the scale parameter acts like a low-pass
filter, the higher the parameter is set, the better it can
learn (and over-fit) to high frequency signals. Setting this
parameter too low leads to overly smooth geometries,
too high and the network learns high frequency artifacts,
over-fitting to high frequency noise in the training data.

2



3.2. Multi-Scale feature extraction

The goal of this network is to learn a function that, given
the (optional) voxel-grid X, image I and a point p, deter-
mines the RGB color C and TSDF value S of the point
p. To this end we extract features of images (2D) and (op-
tionally) voxel grids (3D). Inspired by the success of works
using local multi-scale features, namely [2, 20, 15], we em-
ploy local multi-scale features. The specific differences be-
tween 2D and 3D feature extraction are mentioned in the
following paragraphs.

During ablations, different backbones for the 2D encoder
and different 3D encoder architectures (i.e. a simple Point-
Net [13] or standard 3D convolutions without point sub-
sampling) have performed marginally worse, but the pro-
posed architecture is robust to the exact choice of encoder
backbone.

Feature Encoding and extraction: We apply convolu-
tions on the ND feature grid (i.e. an image or voxel-grid),
each of which is followed by a down-scaling layer. At every
down-scaling level, we sub-sample and interpolate the fea-
ture grid at the (projected-) point locations. Features from
every scale are then concatenated to obtain a set of features
at multiple scales. Now every feature grid ν ∈ {X, I} is en-
coded by encoder Gi via the features Fk(p) sub-sampled at
p at stage k. The feature vector encoded by G has the fol-
lowing local and global multi-scale features that encode the
global and local structure of the scene and is of the shape:

Gi(ν) := [F1(p), ..,Fn(p)], (2)

where k denotes the down-sampling stage at which the
feature was extracted and Fk ∈ FK×K

k (for images), or
Fk ∈ FK×K×K

k respectively for voxels, the local sub-
sampled feature vector of p at k of decreasing resolution
K = N

2k−1 , and variable channel dimensionality Fk ∈ N at
each stage Fk ⊂ RFk .
During ablations, we investigate the impact of different fea-
ture modalities, and the performance in- or decrease for re-
moving the 3D encoder, or reducing the available informa-
tion.

Feature extraction 2D: We use a ResNet50 [6] without
pre-training, but in general the style of architecture is sim-
ilar to the encoder used by authors of DISN [20]. 2D fea-
tures are extracted locally, or rather via projection, at mul-
tiple scales. Concretely, we perspectively project the 3D
point into the (image-) feature plane via given GT camera
intrinsics and extrinsics. Point- and image-coordinates are
normalized to NDC space, i.e. {xNDC , yNDC} ∈ [−1, 1].
After every down-sampling layer, for every feature map and
every point, we sub-sample the feature map at the projected
2D point location on the image plane. To reduce the to-
tal amount of 2D-features extracted, the feature-maps at ev-
ery scale are reduced along the feature map dimension with

Figure 2. Overview of proposed 2D encoder with projective fea-
ture sub-selection. Image and encoder adapted from [20]. At
every scale, feature maps are sub-selected via 3D-2D point projec-
tion onto the image plane and extracted along the feature-channel
dimension. These per scale features are finally concatenated and
passed to a decoder along with embedded coordinates and (op-
tional) 3D features.

1D convolutions and ReLU activations before concatenat-
ing them. In contrast to DISN, the last feature-map is not
flattened and concatenated: in our experiments the down-
scaled sub-sampled features provided enough of the local
neighborhood to capture global details in aggregate.

Feature extraction 3D: We use a similar architecture as
proposed by the authors of IF-Net [2]. In contrast to IF-
Net, we only extract the features at the location of the query
point p and not its Cartesian neighborhood. The approach
of extracting also a local neighborhood of interpolated fea-
tures has led to quick over-fitting and limited success in the
proposed architecture.

Feature decoding: The 2D (and 3D) features encoded
by Gi extracted at point p are concatenated with the Fourier
embedding γ(p). This point-specific feature vector is fed
into a five-layer fully connected network f(·), with two
additional separate decision-heads, one for SDF and RGB
each. In principle, the structure of the decoder is simi-
lar to that of [12]: the feature vector is injected at Layer1
and re-injected at Layer3 by concatenating it with the out-
put of Layer2. Some intermediate layers of the original
DeepSDF architecture were pruned as they had no tangi-
ble effect on performance for our dataset in preliminary ex-
periments. Every layer but the decision-heads is activated
with ReLUs, initialized with the asymmetric Kaiming ini-
tialization and weight normalized, which showed improved
training stability over BatchNorm. The decision heads are
activated by tanh (S) and sigmoid (RGB) respectively and
together determine the 4 tuple (S,R,G,B), i.e. the TSDF and
RGB values at p:

f(Gi, γ(p)) : F1 × ...×Fn 7→ [S,R,G,B] (3)

3



3.3. Method Training

During training, the network is provided by the coordi-
nates (XYZ) of a point in canonic Cartesian space, its color
values (RGB) and its TSDF value (S) denoting the signed
distance to the closest surface. (S,RGB) are only used as
supervision for the loss formulation. Then, conditioned on
a feature grid ν ∈ {X, I}, i.e. an image and (optionally) a
voxel-grid, the network predicts for any point coordinate its
corresponding color and TSDF value.
During training, depending on the kind of experiment, we
provide the network with different amounts of 3D informa-
tion, these are, from least information to most information:

• Only conditioned on an image, no 3D information
• Visible points voxelized into a voxel-grid
• N surface points voxelized into a voxel-grid
• Ground truth 323 occupancy grid
• Ground truth 323 SDF grid

Projection of Image-points into 3D
As a preprocessing step, we reproject the 30 renderings, at
regular intervals from the upper hemisphere, of each ob-
ject into a dense pointcloud using the depth map and cam-
era parameters. Depending on the task at hand, either we
sub-sample (a) visible points (b) points from the pointcloud.
These points are then binned in 3D bins of set size (323 for
most experiments) and voxelized into (i) an occupancy grid,
(ii) a color averaged density grid, where each voxel denotes
the average color and the fraction of total points inside its
volume.

Preliminary experiments showed that visible point
clouds only occupy single digit percentages and below of
the available voxel volume, the amount of occupied voxels
inversely scaling with voxel resolution. So although one
would expect a large benefit to increasing the resolution,
the gains are severely diminished by having to reduce batch
sizes due to increased memory cost of the voxels.

Supervision and loss: At training time, the network,
conditioned on the encoded feature grid Gi(ν), predicts the
4 tuple (S, RGB) for every input point p, and is supervised
by the points respective ground truth values via scaled L1
mini-batch loss:

LB(p|Gi(ν)) =
∑
p∈B

λC‖C − CGT ‖+ λS‖S − SGT ‖

(4)

Where B denotes the batch, C and S the predicted
colors and TSDF values, and CGT and SGT the ground
truth values for supervision. λC (=0.5) and λS (=10) are
loss-scaling factors.

3.4. Method Inference

During testing, the network is evaluated on points on a
grid of the desired resolution (2563 in most cases). Contrary
to explicit representations, we can query the network at ar-
bitrary grid resolutions, although the inference time scales
cubically with the resolution. The mesh is then extracted
via marching cubes, and evaluated according to section 4.1.

For color inference, the vertices of the extracted mesh
are passed back for RGB inference at the vertex coordi-
nates, the vertex [N,3]-list is then updated to include vertex
colors as a [N,6]-list. For qualitative results the vertex-
colored mesh is then rendered from the input perspective
and four preset novel view points.

4. Experiments
To set a scope for reasonable expectations, we bench-

mark the proposed architecture and training regiment on
the same splits but with varying information provided to
the model. We then compare the models performance
against the SOTA. After setting an expectation for the
model, we consider (1.) Point cloud completion and
(2.) 3D reconstruction from images without unseen 3D
information. In all cases, the model is conditioned on an
RGB image and queried for a point in 3D space for the 4D
tuple (S, RGB). The initial simplified watertight models
were extracted from a TSDF at 2563 voxel resolution
and provided by [20]. From these simplified meshes, we
re-compute TSDF at 323 resolution and train the model
on these ground truth TSDF // Occupancy voxel-grids, to
set an upper boundary for our expectations of the metrics,
as the network simply has to learn a reasonable marching
cubes approximation. Failure would be a good indicator for
erroneous or misaligned training data or out of distribution
samples. Indeed, after simplification many meshes are seen
to show artifacts, but are not removed from the split to keep
comparisons fair.

4.1. Experimental setup

Data: As dataset we use the cars subset of ShapeNet
[1], which consists of textured, synthetic 3D car models.
This dataset features a wide variety of cars, but also many
erroneous meshes and an inconsistent approach to model-
detail (some feature extreme dashboard-knob level of detail,
some are minimalist without interior geometry).

Since our needs deviate from the related works, we em-
ploy a slightly modified procedure from that of DeepSDF
and OccNet. Models are rendered into RGB images in
blender from the upper hemisphere at 12◦ increments (30
images per model). Ground truth depth maps and camera
parameters (I, E) are saved to extract colored pointclouds.

4



The visible object-pixels are re-projected using the camera
parameters, depth- and alpha- channels. The reprojected
point clouds are then merged across all views of an object
to form a dense, colored pointcloud.

The simplified meshes provided by [20] are centered,
scaled and aligned via ICP to the reprojected pointcloud us-
ing CloudCompare [3] - these meshes will later serve as
GT to compute metrics and SDF values. From the colored
pointcloud, a subset of 100k points is copied and perturbed
with Gaussian noise of different σ, similar to the procedure
of [2, 9, 12], but we additionally determine the RGB val-
ues of these new points via the average of their K nearest
neighbors (K=2) in respect to the original pointcloud. The
motivation of using an averaged KNN is the assumption that
a smooth RGB scalar field might be easier to approximate
by the model.

Lastly, for each point we calculate the corresponding
truncated signed distance field values S ∈ [−0.1, 0.1]
respective to the aligned, simplified meshes. For the
sake of comparison, we use the same split as IF-Net but
additionally remove further 13 extreme outlier meshes from
the training data, 2 from the validation split and 0 from the
test set, to keep comparisons fair. The complete split set is
available with the code online.

Metrics: We follow the lead of the authors of IF-Net
to measure the reconstruction quality quantitatively and
evaluate the meshes with these three established metrics:
volumetric intersection over union (IoU) measuring the
spatial overlap of the volumes (higher is better), Chamfer-
L2 distance, to measure the accuracy and completeness
of the surface (lower is better), and normal consistency
measuring the accuracy and completeness of the shape
normals (higher is better).

Baseline: The main goal is to investigate impact and
interplay of using different feature modalities in the task
of 3D shape reconstruction. To this end, we first provide a
sensible baseline to establish model capacity by providing
it with near ground truth data. We will then compare to
[20, 9, 2] - keep in mind however that our model has only
trained on a single ShapeNet class, it is hard to gauge if
training on the entire dataset would enhance or diminish
the models performance.

Hyper-parameters: The authors of the 1-Cycle policy
recommend setting the highest maximum learning rate that
does not lead to complete divergence, we therefor set it
to 2e-3. This policy seems fairly robust in our case, and
all experiments between 1e-2 and 1e-3 have converged to
the same basin of attraction with similar loss curves and
loss values. The learning rate decay plays a secondary
role to learning rate and has been kept at a constant

wd = 10−4/step, we use the largest batch-size that fits the
GPU (10 for 32 voxel resolution, 7 for 64).

Data augmentation and regularization: Although
much work has been spent on providing robust, on the fly
data-augmentation and regularization techniques such as
the Eikonal regularizer [4], which forces the predicted
SDF scalarfield to have a unit norm gradient everywhere,
the implicit regularization properties of the 1-Cycle policy
outperformed them and rendered them redundant in the
proposed architecture. For that reason, we do not augment
or regularize the network besides the aforementioned
parameters for the 1C policy LR schedule over 80 Epochs.

Training speed: Thanks to Fourier embedding and the
1-Cycle policy, the training converges within 4 hours to
lower values than manual setting of the learning rate. If the
reader takes away one lesson from this report, its this: we
cannot overemphasize the gain in time and performance
by simultaneous usage of both the 1C policy and Fourier
embedding for implicit regression tasks.

4.2. Setting expectations and ablations

To set a sense for the capacity of the network, we train
it on the entire data-set and evaluate its performance con-
ditioned on different amounts of available information (Ta-
ble 1). The first two entries designate results when trained
with a ground truth voxel grid of 323 resolution rather than
a voxelized pointcloud, i.e. where GT-SDF designates an
SDF grid and GT-OCC an occupancy grid, we compare with
meshes extracted via marching cubes from 2563 TSDF files,
in principle the task of super-resolution. For the cases of (i)
GT-SDF and (ii) we see that the model learns to infer (i)
an adequate super-resolution marching cubes and (ii) voxel
super-resolution, although the accuracy degrades as we of-
fer the model less information.

Clearly the presented 30M parameter model has enough
capacity to learn from the ca. 2000 car training samples and
generalize to unseen models of cars. An important note is
that while the average IoU for (i) lies at 93.4%, the median
%IoU lies at 95.6, demonstrating that few, heavy outliers
distort the overall results, a common trend visible in every
experiment. Indeed these are the expected outliers of out
of distribution items, i.e. cars with rolled down windows
and detailed interior geometry or unrealistically elongated
limousines.

4.3. Pointcloud completion

Next, we apply the network on the problem of complet-
ing sparse and dense point clouds - to this end we sub-
sample 300 points (sparse) and 3000 points (dense) respec-

5



Figure 3. Qualitative results from the dense (3000 surface points, 643 voxelization) of ours64 (table 2) pointcloud reconstruction. The
model, conditioned on (a: input) a pointcloud and rendered image of a textured model, reconstructs a vertex-colored 3D mesh rendered
from (b) the input view and (c) novel views. Visual clarity is highest from the input perspective, showing that 2D features are richly
extracted and lead to accurate reconstruction of the model. Novel views plausibly and faithfully reconstruct the original model, although
with less visual clarity. Notice that the model can reconstruct fine details such as spoilers, tire-covers and mirrors.

(%) IoU ↑ (%) Normals ↑ L2 ↓
GT-SDF 93.4 95.4 1.76
GT-OCC 91.0 92.9 1.85
2D only 74.5 84.4 8.22

Occ. Voxels 77.8 86.1 3.73
ours 78.7 86.2 3.05

ours* 79.1 86.4 2.84
m(ours) 86.3 87.8 2.05

Table 1. L2 signifies Chamfer-L2 distance * 10−4. Values aver-
aged over test-set. Models denoted with GT are supplied with 323

resolution voxel grids (TSDF, Occupancy), Model 2D receives no
3D shape-information and the other models receive the visible (up
to 1.5 ∗ 104) voxelized view-points as input. For ours* we set
λC = 0, demonstrating that color prediction has a minor adverse
effect on performance. m(ours) indicates median performance of
ours rather than average, indicating the presence of some extreme
outliers that the model is not able to faithfully reconstruct.

tively from the (from all available views) re-projected sur-
face point-cloud. These (colored) points are then voxelized
at set resolution with 4 channels (density, RGB, 323 and
643) and fed to the 3D encoder. As such, it is no longer
purely single-view reconstruction but an exploration into
how additional conditional image features affect perfor-
mance in regard to methods without [9, 2], whose works
will serve as baseline. One notable difference besides the
extra feature modality, is that our network runs at much
lower voxelization resolution compared to the other works,

who use a very fine and memory intensive gird of 1283 vox-
els, a 16000% increase in memory cost, which gives the net-
work a special advantage for the dense sampling case. In-
terestingly, we note large deviations between mean and me-
dian performance for our metrics, indicating extreme out-
liers and possible artifacts from the data processing. We
note that e.g. %IoU in the dense case of ours64 is 82.6,
while the median m(ours64) %IoU is 90.1, outperforming
all other methods with reduced memory footprint.

The explanation for why similar models evaluate so dif-
ferently on the same split is obvious. While IF-Net sam-
ples directly from the simplified GT 3D mesh, inherently
able to capture interior geometry and varying levels of de-
tail, we only use points visible as pixels during rendering of
the original textured ShapeNet model. Therefore, we can-
not accurately consider interior geometry or general out of
distribution outliers. It stands to reason that such samples
could be found in the training data and degrade overall pre-
diction quality. Still, we note the mean values by ours64 and
median values by m(ours64) separately and without embold-
ening to keep comparisons fair and clear.

4.4. Single view reconstruction

Lastly, we compare our network, conditioned on images,
and reprojected image-points, with other works that rely on
a single feature modality. Our method outperforms the other
works by a significant margin, especially when considering
it’s median performance(see m(ours) table 3).

6



Figure 4. Qualitative results from the single view results (visible surface points are reprojected and voxelized at 323 voxelization) of ours
(table 1). The model conditioned on (a: input) a rendered image of a textured model, reconstructs a vertex-colored 3D mesh rendered from
(b) the input view and (c) novel views. Just like in previous experiments, visual clarity remains highest from the input perspective. Novel
views plausibly and faithfully reconstruct the original model, but are more approximative and blurry in nature, with cone shaped artifacts
emanating from the camera center towards the mesh. Notice that the model can reconstruct unseen fine details such as wheels, windows
and mirrors.

(%) IoU ↑ (%) Normals ↑ L2 ↓
OccNet 73 72 88 88 30 40
IfNet 79 88 90 95 2 2
ours32 79.7 81.4 86.7 88.0 2.2 1.8
ours64 80.3 82.6 86.6 89.3 2.3 1.5

m(ours64) 87.2 90.1 87.2 90.5 1.8 0.96

Table 2. Left number indicates score from 300 points, right one
from 3000. L2 signifies Chamfer-L2 distance * 10−4, we compare
with the results reported by the authors of [9, 2], who evaluated
their results on a ≈26 000 item split, while ours are trained and
evaluated only on the ≈2500 cars-subsplit. ours voxelizes points
at 4 channels and 323, while the other works voxelize at 1283, a
16000% memory increase. ours64 is identical to ours besides vox-
elizing at 4 channels and 643, demonstrating the improvement that
finer voxelization offers, while m(ours64) shows median instead of
average performance among the test set, indicating heavy outliers.

Qualitatively, fig. 4, we see that here too the images from
the view-perspective are faithfully reconstructed, match-
ing those from the dense pointcloud reconstruction. How-
ever, novel view points of occluded sides show ray-like ar-
tifacts emanating conically from the camera center. This
is clearly an artifact resulting from the projective feature
sub-selection, as features from visible pixels are responsi-
ble for all points lying on a cone between camera center
and 3D point. While the visual clarity of occluded sides is
diminished over that of the dense reconstruction, the model
manages to sensibly complete the models shape and is even
able to infer details like window outlines, tire-covers and

lights, and mostly continues the reconstruction in a reason-
able color.

One common artifact is a strongly shaded back side, re-
sulting from lighting placed in-front of the model during
rendering, a procedure kept constant for all models. To
avoid these kind of artifacts it would make sense to render
models with per-model random or ambient lighting.

(%) IoU ↑ (%) Normals ↑ L1 ↓
OccNet 73.7 85.5 15.9
DISN 77.0 n.A. 4.92
ours 79.1 86.4 1.06

Table 3. L1 signifies Chamfer-L1 distance * 10−2, we evaluate
our results wrt. the simplified high-resolution mesh provided by
[20] and we compare with the results reported by [9, 20].

5. Discussion and Conclusion

In this work we demonstrate SOTA results for the re-
construction of vertex-colored meshes from ShapeNet cars.
We find that multi-modal feature input positively affects re-
construction quality, and show lower memory requirements
during training allowing for higher batch-sizes and faster
convergence. We present a simple adaptation for the con-
struction of datasets for vertex colored mesh inference in
analogy to[12], and qualitatively present the models’ high
quality colored mesh outputs. However, as we are unable to
find any positive correlation for our loss formulation with
explicit RGB loss on IoU, we note that more work is re-

7



quired to establish a useful RGB-value informed loss.
Much time and effort has been spent on creating gradi-

ent step models, to circumvent differential rendering or ray-
marching, but none were able to outperform the presented
approach. The performance decrease, most likely caused
by additional strain on the models capacity, i.e. forcing it
to predict 300% more scalar values per point coordinate,
can be minimized with the presented 4 channel (Density,
RGB) pointcloud-voxelization, rather than voxelization into
classical voxel grids. Another possible explanation for the
degradation of performance using this loss formulation, is
that the model is punished less for a warped geometry than
wrong color values: the exact cause for the reduction in per-
formance is therefore still unclear.

A natural and straight forward extension to the presented
work is the extension to true stereo reconstruction, with
multiple images as input. Exploratory results were pre-
sented in 4.3, and while point-cloud reconstruction results
were satisfactory, especially in regard to the evaluated ge-
ometry metrics, the visual clarity was best from the image’s
point of view, highlighting how beneficial 2D features are
for visual clarity in 3D reconstruction. An extension to true
stereo could therefore substantially increase reconstruction
results and visual clarity of mesh-colorization.

Limitations: The presented method requires a fairly
simplistic dataset, clean exterior hulls of objects, and as it
relies on surface-point re-projection, it requires calibrated
depth and camera parameters. Out of distribution mod-
els with detailed interior geometry naturally perform badly
with the presented evaluation scheme, causing mean and
median performance to deviate strongly on ShapeNet-cars.
In addition, the models’ robustness to noisy real world data,
or approximated camera parameters and depth maps, rather
than the here used ground truth information, is still in ques-
tion and requires further research.

References
[1] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich
3d model repository. CoRR, abs/1512.03012, 2015. 1, 4

[2] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion, 2020. 1, 3, 5, 6, 7

[3] Daniel Girardeau-Montaut. Cloudcompare, version 2.11.3,
2020, [gpl software], http://www.cloudcompare.org/. 5

[4] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes, 2020. 5

[5] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. Atlasnet: A papier-
mâché approach to learning 3d surface generation, 2018. 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 3

[7] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds,
2018. 1

[8] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose, 2018. 2

[9] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 1, 2, 5, 6, 7

[10] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 1

[11] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian
Chang, and Jian Jun Zhang. Total3dunderstanding: Joint lay-
out, object pose and mesh reconstruction for indoor scenes
from a single image, 2020. 1

[12] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation,
2019. 1, 3, 5, 7

[13] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation, 2016. 2, 3

[14] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 1

[15] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion, 2019. 3

[16] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d
point cloud generative adversarial network based on tree
structured graph convolutions, 2019. 2

[17] Leslie N. Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates, 2018. 1

[18] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains, 2020. 1, 2

[19] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong
Zhang, William T. Freeman, and Joshua B. Tenenbaum.
Learning shape priors for single-view 3d completion and re-
construction, 2018. 2

[20] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit sur-
face network for high-quality single-view 3d reconstruction,
2019. 1, 3, 4, 5, 7

8


