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love and support throughout my academic career. Their belief in me has been a constant
source of inspiration, and I am grateful for everything they have done for me.
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Abstract

This thesis addresses the problem of novel view synthesis from sparse-view super-
vision in the field of computer vision. Neural radiance fields (NeRFs) are a popular
approach for this problem, but they rely heavily on a large dataset of images and
precisely calibrated cameras. Motivated by recent advances in the area of monocular
geometry prediction, which allow for cheap generation of depth- and normal maps,
we systematically explore methods to incorporate these cues for the supervision of
NeRFs. Our proposed method bounds the weights accumulated along rays using a
Gaussian cumulative density function about the predicted depth. These bounds are
directly derived from a Gaussian assumption on the likelihood of a ray being absorbed
on its way through a neural volume. We show that our method, contrary to prior
work, consistently improves reconstruction results for any number of training views,
with photorealistic reconstructions being feasible with as few as three views. Our
contribution to the field of computer vision is a flexible and easily implementable
improvement to the performance of NeRFs for novel view synthesis.
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1. Introduction

1.1. Motivation and Research Statement

View synthesis refers to the process of generating new views of a scene or an object
from a given set of views or images. It is an important and active research area, with
a rich body of work, lying at the intersection of the fields of computer vision and
computer graphics, and has numerous applications in various domains, and areas such
as virtual and augmented reality, robotics, and the entertainment industry.

In the field of virtual reality (VR), it is used to generate new views of a scene in
real-time to match the viewpoint of the VR headset. This enhances the immersive
experience of the user and trades the computational overhead of rendering new views
in real-time for bandwidth and memory to store entire scenes in a photorealistic quality.

View synthesis can also be used in the field of robotics to generate new views of the
environment from a robot’s perspective, providing the robot with a more comprehensive
understanding of its surroundings. In the entertainment industry, it is used to digitalize
assets and environments from a collection of images, rather than having to expensively
create them by hand by highly trained professionals. The traditional approach to view
synthesis involves creating intermediate representations, i.e. 3D models of the scene or
object, and then rendering new views by changing the viewpoint. However, with recent
advancements in deep learning, the task of view synthesis can be performed more
efficiently and realistically using generative models, such as Generative Adversarial
Networks (GANs [Goo+20]) and Variational Autoencoders (VAEs [KW13]), and neural
radiance fields (NeRFs [Mil+21]).

These recent approaches can generate novel views with high realism and quality, and
their use case is generally distinguished by an important methodological difference:
Generative models are trained on a large dataset of real-world images to generate
completely new content to coherently match the input. On the other hand, Neural
Radiance Fields (NeRFs) are trained as a per-scene representation, based on a collection
of images that depict a specific scene only. As a result, NeRFs allow for the synthesis
of accurate and high-quality novel views of said scene, but a trained model does not
generalize to other scenes.

NeRFs have the potential to revolutionize the creation of realistic and interactive
virtual environments and democratize the entertainment industry. By enabling users
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Figure 1.1.: Neural radiance fields (NeRFs [Mil+21] introduce a stochastic notion of visibility, to
generate novel views, and to circumvent difficulties in differentiating through ray-
triangle intersections. Using a fully differentiable volume rendering equation, and a
dense set of input images with camera parameters, a neural network is regressed to
predict a density and color at every point of a neural volume during training. This
network is then queried during inference to generate photorealistic novel views,
with full freedom over camera pose, lens properties, and image resolution, allowing
for greater artistic freedom, and the creation of AR and VR media without the need
for highly trained digital artists.

to automatically populate virtual environments from collections of images without
the need for highly trained 3D artists, NeRFs have a significant impact on its business.
However, despite these advancements, most current NeRF methods are still limited
by their slow and complex training, and high computational costs, making them
unsuitable for deployment on edge devices and hindering a real-time user experience.
Furthermore, the training of NeRFs depends on the availability of a large collection
of images with constant illumination, obtained from precisely calibrated cameras, for
dense and accurate supervision.

Despite a plethora of literature addressing the speed, accuracy, and fundamental
formulation of Neural Radiance Fields, there remains a gap in the field regarding the
effective utilization of depth and normal data for supervision. This information can
be obtained inexpensively from consumer-grade RGB-D cameras and from monocular
depth and normal prediction networks, such as OmniData [Eft+21]. The incorporation
of this data has the potential to significantly improve the accuracy and speed up the
training of NeRFs, making it a crucial area for future research and development.

1.2. Research Objectives and Expected Outcomes

1. A comprehensive review and analysis of the state-of-the-art methods in this field,
which could be valuable for researchers, practitioners, and students looking to
explore this area.
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2. Advancements in the understanding of the underlying principles and challenges
of novel view synthesis with monocular inputs, which could lead to new insights
and applications in related areas such as virtual and augmented reality, 3D
reconstruction, and robotics.

3. Develop novel approaches to improving the quality and realism of synthesized
views, while simultaneously reducing the number of views necessary for training,
with the use of complementary monocular cues during training, i.e. color, depth,
and normal maps, to increase the effectiveness of NeRFs in general.

4. Comparative evaluation of different deep learning models and approaches for
novel view synthesis, including their performance on different types of images
depicting synthetic and real-world scenes.

Expected Outcomes. I expect to gain a deep understanding of computer vision
and image processing techniques. I will explore the state-of-the-art methods used to
address this problem, including classical structure from motion algorithms generally,
and suites of algorithms such as COLMAP specifically. I will discuss, compare and
learn from recent developments in neural radiance fields (NeRFs) relevant to novel
view synthesis.

I also anticipate gaining expertise in data preparation and augmentation, as well
as in evaluating the performance of the models using metrics such as PSNR and
SSIM. Additionally, I expect to develop skills in problem-solving, critical thinking, and
experimental design, as I investigate novel approaches to improve the quality and
realism of synthesized views.

Overall, my expected learning outcomes include an in-depth understanding of novel
view synthesis with monocular inputs, advanced technical skills in computer vision
and machine learning, and the ability to conduct independent research and contribute
to the field’s knowledge.
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1.3. Research Contributions

In this work, we present a novel loss formulation derived from the fundamental
principles of Neural Radiance Fields (NeRFs) and statistical considerations, which
enhances the performance of novel view reconstruction. Our approach incorporates
depth (and normal) constraints and provides a consistent improvement over previous
methods. We demonstrate the limitations of prior work and emphasize the ease of
implementation of our method in contemporary NeRF frameworks. Our contribution
represents a significant advancement in the field of view synthesis and has the potential
to be widely adopted.

1.4. Thesis Structure

In this thesis, we tackle the long-standing challenge of view synthesis from sparse-view
supervision. This work consists of 6 chapters and follows the above-outlined research
objectives.

Following the introduction and motivation, Chapter 2 provides a comprehensive
review of the relevant literature in the field, including the state-of-the-art techniques
and theories, and introduces the research question. In Chapter 3, the working principle
of Neural Radiance Fields (NeRFs) is discussed in detail, as it is directly relevant to the
proposed method and the main contribution of the thesis.

Chapter 4 describes the proposed novel view synthesis approach using NeRFs in
detail, including the methodology, experiments, and evaluations. The results are
presented and analyzed in Chapter 5, with a focus on comparing them with existing
approaches. Finally, Chapter 6 concludes the thesis with a discussion of the findings
and provides insights for future work in the field.




2. Related Works

The techniques presented in this thesis aim to directly extend NeRF, a highly influential
technique of directly regressing a 3D scene from a collection of images, with the intent
to synthesize novel photo-realistic views. This, essentially, is the task of novel view
synthesis.

Before discussing the details and implementation, it is important to review the recent
developments of the field, especially in the context of 3D representations used by
computer graphics for view synthesis, and the recently introduced continuous implicit
representations (neural fields).

2.1. Novel View Synthesis

Novel view synthesis is a long-standing computer vision task with a large body of
work. The classical approaches consist of

1. Projection-based methods, i.e. projecting the texture of an object or scene onto a
3D geometry to synthesize new views.

2. Light field Rendering: Given a dense sampling of views one can employ Light
tield sample interpolation techniques [LH96; DLD12] that can synthesize photo-
realistic novel views.

3. Multi-view Stereo (MVS): The reconstruction of a scene’s 3D geometry by using
multiple images captured from different viewpoints and the robust matching
of photo-metric features. The position of image points in 3D space can then
be triangulated from the intersection of their projection rays. Integral to the
success of this technique are knowledge of the poses and precise calibration of the
cameras from which the images were taken. MVS typically takes a set of ordered
images as input and produces a dense and accurate point cloud or triangular
mesh of the scene.

4. Structure from Motion (5fM), a technique complementary to MVS, is primarily
used to recover the camera poses and 3D structure of a scene. The inputs to SEM
are usually a set of unordered images from which it produces a sparse point
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cloud, e.g. a set of key points, and camera poses. The resulting point cloud can
be refined using various algorithms and robust matching procedures such as
bundle adjustment to produce a more accurate and dense representation of the
3D structure. SfM is widely used in computer vision and photogrammetry and is
still an active area of research and development, with ongoing efforts to improve
the accuracy, speed, and scalability of its techniques.

One such suite of techniques, COLMAP [SF16], is a general-purpose SfM and MVS
pipeline that is used by this work to generate the poses and camera parameters
used in the experimental evaluations (chapter 5). For a brief illustration of
COLMAP’s reconstruction procedure see Figure 2.1.

Images Correspondence Search Incremental Reconstruction Reconstruction

B Initialization =
1

1
Image Registration Outlier Filtering

Geometric Verification Triangulation Bundle Adjustment

Figure 2.1.: Overview of COLMAP’s incremental Structure-from-Motion pipeline. COLMAP
extracts distinctive features from a collection of images and matches them amongst
images to establish correspondences. Next, the intrinsic- and extrinsic- parameters
of each camera are estimated and initialized. The parameters of initialized cameras
are then iteratively refined via bundle adjustment, and key points that cannot be
triangulated during optimization are rejected as erroneous matches. [SF16]

These traditional techniques use explicit representations of geometry such as point
clouds, voxel grids, or triangular meshes, with very distinct advantages and disadvan-
tages. While e.g. Voxel Representations are obvious candidates to describe space with
much the same techniques used in the deep learning revolution to describe images,
their cubically scaling memory footprint limits training to small batch-sizes and slow
training, making them unsuitable to describe complex scenes. While their problems
can be remedied by employing octree data structures, they have effectively fallen out of
favor for more elegant descriptions of space.

Pointclouds are widely used in both robotics and the computer graphics communities,
as they are relatively lightweight and able to model complex scene geometries, it has
been difficult to incorporate them in convolution-based deep learning architectures, as
they are usually unevenly sampled, cannot model empty space and have no obvious
local order to perform convolutions on. Qi et al. [Qi+17a; Qi+17b] achieved permutation
invariance by a applying fully connected neural network to each point independently,
followed by a global pooling operation, pioneering point clouds for discriminative
learning.
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Triangular meshes are collections of interconnected triangles that approximate
surfaces in 3D space. They are efficient representations of curved spaces compared to
voxels and provide smooth and continuous surfaces and enclosed volumes compared
to point clouds, but are typically much more difficult to handle than their alternatives,
as their faces are implicitly described by their vertex positions in space.

2.2. Neural Field Scene Representation

Concurrent works in 2019 [Par+19; Mes+19] explored neural implicit representations
(neural fields, coordinate networks) in which a Multi-Layer Perceptron (MLP) directly
regresses a continuous scene description from a vector-valued input (usually coordi-
nates) and is optionally conditioned on some latent code or image. The output scene
description, i.e. SDF and Occupancy -fields, is provided at training time as supervision
from ground truth meshes. The trained MLP thus learns to map input coordinates to
Occupancy-/SDEF- level-sets and thereby fully describes the boundaries of a watertight
object in 3D space.

The advantages of these representations are an extremely low memory footprint, as
the entire scene is encoded in the weights of the MLP, with no need to keep track of
explicit representations of objects and volumes in the scenes. The major drawbacks
however are the need for ground truth 3D data (e.g. ShapeNet [Cha+15]) as supervision,
and expensive evaluations at test time, as the only way to extract the information from
the MLP is through queries on a dense volumetric grid.

Subsequent works suggested optimizing directly from 2D images, via differential
rendering approaches, to alleviate the need for ground truth 3D supervision, data which
for real-world application is prohibitively expensive and cumbersome to generate.
Niemeyer et al. [Nie+20] trained neural volumes in the form of occupancy fields,
for which they introduced a differentiable rendering formula to alleviate restrictions
necessitating the use of voxel- and mesh-based representations. Sitzmann et al. [Sit+20]
instead proposed Scene Representation Networks, coordinate networks able to regress
high-frequency 3D geometry from low dimensional coordinate inputs, by replacing
typical ReLU activation functions with harmonic functions, creating similar capabilities
to the later widely used Fourier embedding popularized by NeRF.
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2.2.1. NeRF

NeRF [Mil+21] presented a novel method for generating photo-realistic novel views
from camera parameters and 2D images alone. They proposed regressing a neural field
from the 5D vector of input coordinates x = (x,y, z) and viewing direction d = (6, ¢)
to output volume density o(x) and radiance ¢ = (r, g, b). The central idea, to overcome
the challenges of differentiating through ray-triangle intersections, was a probabilistic
notion of visibility [TM22].

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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Figure 2.2.: An overview of NeRF’s neural radiance field scene representation and differentiable
rendering procedure. Images are synthesized by sampling 5D coordinates (location
and viewing direction) along camera rays. (a) Samples from the reprojected rays
are embedded (featurized) in a periodic, higher dimensional space, and fed into an
MLP (b) to produce a color ¢ and volume density o(x). NeRF’s rendering function
(c) is fully differentiable and thus NeRFs can be optimized from camera parameters
and images alone (d), without need the for 3D supervision. [Mil+21].

The network, in summary, learns to predict the radiance of incoming light at each
point in the scene, modeling occlusions as density (differential opacity, i.e. the differen-
tial probability of the light being absorbed over an interval) and encodes reflectance and
view dependant effects via view-encoding of the camera from which the ray originates.

The network is trained on a large set of input views, minimizing the reconstruc-
tion error between the predicted and ground truth views. This allows the network
to synthesize new views of the scene by evaluating the learned NeRF at arbitrary
camera positions. From each image, a ray is projected into the neural volume and
densely sampled at discrete points. The samples are then alpha-composited with their
respective alpha-compositing weights (calculated from densities) that are inferred from
the network at each point. See Figure 2.2 for a brief visualization of the technique.

Another significant contribution is the therein proposed effective coordinate embed-
ding (Fourier features), motivated by neural tangent kernel theory, that map the low
dimensional inputs to an orthogonal basis in a higher dimensional space. Without such




2. Related Works

an embedding, the network fails to regress complex scene contents from low dimen-
sional inputs, as the output images suffer from severe aliasing and over-smoothing.

NeRF started something akin to a gold rush in computer vision, as it was easily
trained and featured photorealistic results. The technique however is not without
drawbacks, it relies on dense supervision of equidistant and perfectly calibrated cameras
with identical lighting conditions in each frame. Additionally, the first NeRFs took days
to train, which started a wave of works addressing the various shortcomings, primarily
relaxing the supervision and improving training times. Concurrent works, after only
two years after the first NeRF publication, already feature near real-time rendering
speeds and improved reconstruction results [Miil+22; Che+22].

2.2.2. NeRF variants

Some of the most influential follow-up works [Bar+21; Bar+22] are from the original
authors. Mip-NeRF improves on NeRF with a multi-scale encoding that encodes featur-
ized volumes rather than discrete points, thus allowing renderings at any resolution or
scale. This ameliorates the severe aliasing exhibited by the original NeRF encodings
while being simultaneously more accurate overall and faster to train.

v(x) E[y(x)]

[

a) NeRF b) Mip-NeRF

Figure 2.3.: NeRF (a) samples a neural field on discrete points along rays projected from the
camera center through pixels. Mip-NeRF (b) instead reasons about conical frustums
defined by the ray and pixel-radius 7. By featurizing conical frustums, approximated
by multivariate Gaussians, the network is able to reason about the scale of inputs,
ameliorating common aliasing problems of NeRF. [Bar+21]

In a subsequent publication, Mip-NeRF360°, the authors relaxed the restriction to
bounded scenes by introducing a ray-warping function related to Kalman filters. They
further proposed an improved sampling routine: by using a shallow proposal network
to propose regions of interest, the number of samples required for inference can be
reduced, yielding an increase in speed and accuracy. Finally, the results of this work
largely build upon this model (Mip-NeRF360°, sans scene-wide warp) that has been
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ported to PyTorch [Pas+19] from JAX [Bra+18] throughout the thesis.

2.2.3. Improving NeRF reconstructions with monocular cues

Successful NeRF reconstructions from RGB images require a large number of input
views taken under static conditions, or else geometries will be incorrectly fitted. Depth
as supervision is considered an easily available, cheap to generate, and proven signal to
generate more robust 3D reconstructions. Different works [Den+22; Rem+22; Roe+22]
have proposed their procedures and loss formulations and reported great success, i.e.
faster training, more accurate results, and fewer images required.

One common observation however, is that when the number of images is large,
depth supervision can hamper reconstruction quality, as it potentially constricts the
neural radiance field into a local minimum with inferior PSNR!, by enforcing the depth
supervision constraints. The cautious advice is to rely solely on the RGB signal for
maximum reconstruction quality if the collection of images is large enough.

Surface normals, of objects in the depicted scene, is another strong signal and
previous works [Ver+22; Yu+22] have successfully used this cue to improve reflections
in NeRF [Ver+22] and to improve 3D reconstruction quality of NeRFs regressing
complex scenes [Yu+22] as a signed distance field (SDF).

Contrary to previous works, this work investigates the use of depth and normal cues
to improve photo-metric reconstruction in all settings: with few, and with hundreds.
See chapter 4 for details on the presented method, and chapter 5 for an extensive
evaluation thereof on synthetic and real data.

Peak Signal to Noise Ratio (PSNR) is a commonly used evaluation metric in computer vision and image
processing that measures the similarity between two images. It provides a means of comparing the
quality of reconstructed or restored image data to the original image data. The higher the PSNR value,
the lower the level of distortions in the reconstructed image, indicating a higher degree of similarity
with the original image. See Appendix A for details

10



3. Neural Radiance Fields: Theory

This work builds upon the digest published by Andrea Tagliasacchi in [TM22], whose
clear descriptions, physical interpretation, and concise formalism have served as a
significant inspiration for this study of neural fields. By first reiterating their work’s
principal statements, and by later expanding upon the ideas put forth, this work aims
to make a meaningful contribution to the existing literature on the topic.

The following derivation of NeRF’s underlying principles is closely related to the
derivations presented in the original publication and the aforementioned digest [Mil+21;
TM22].

3.1. NeRF: Probabilistic Interpretation

A scene in NeRF is represented as a 5D vector-valued function, whose inputs are a
3D location x = (x,y,z), and a 2D viewing-direction d = (6, ¢). To these inputs, the
network maps to each location, conditioned on the respective viewing direction, an
emitted color ¢(x) = (r,g,b) and a volume density-field o(x). This neural network
mapping of inputs to outputs is compactly written as Fp : (x,d) — (c,0).

The scene is assumed to be comprised of a cloud of light-emitting particles. The
neural volume is modeled to absorb and emit light but does not allow inter-particle
scattering. For the sake of simplicity, the following derivation assumes that the emitted
light from within the volume does not change as a function of viewing direction.

The density-field o(x) describes the volume and denotes the differential likelihood
of a ray being absorbed by a particle over an infinitesimal distance. Since every point x
along a given ray r = r(o,d) = o + td in the volume is fully characterized by the ray’s
origin o, and the ray’s direction d, the vector-valued density field o(x) can be rewritten
as a scalar-valued density field o (t), that depends only on the distance ¢ traveled along
the ray.

This density is closely tied to the transmittance function 7 (t), which indicates the
probability of a ray traveling over the interval [0, ) without hitting any particles, and
following the derivations of [TM22], we find that the probability of 7 (t + dt), i.e.
the probability of not hitting a particle when taking a differential step dt through
the volume, is equal to 7 (t) - (1 —dt - o(t)), i.e. the likelihood of the ray reaching t,
multiplied with the probability of not hitting a light absorbing particle during the step.

11
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Formally we are looking to solve the following differential equation:
T(t+dt)=T(t)- (1 —dt-o(t)) (3.1)

T(t+dt) — T (¢)
dt
In a probabilistic interpretation, the function 1 — 7 (¢), i.e. the probability denoting
the event that the ray gets absorbed by a particle before arriving at ¢, can be interpreted
as the opacity of the medium along the ray, and as the cumulative distribution function
(CDF) for the event of ray absorption. The corresponding probability density function
(PDEF), the derivative of the CDE, follows trivially from Equation 3.2:

= T'(t) = —T() - (1) (32)

A=T() ==(=T{#)-o(t)) = T(t) o(t) (3.3)

and indicates the likelihood that the ray stops at precisely ¢. Solving this differential
equation with an exponential approach leads to the transmittance function 7 (a — b)
for a continuous interval [g, b]:

T(a—b) = ;EZ; = exp <— /aba(t) dt> (3.4)

3.2. Volume Rendering with Radiance Fields

To render the resulting color for a ray passing through the neural volume (radiance
field), the colors are inferred from the MLP Fy : (x,d) — (c,0) at discrete sampling
points, conditioned on the rays respective (viewing-) direction. These colors can be
calculated by solving the volume rendering integral Equation 3.5:

N tn+1
Cltwet) = Y. [ T(0)- 00 ey dt (35)

With the assumption that the ray is traversing the volume through piece-wise constant
densities, the volume rendering integral, and Equation 3.4, one recovers (without
derivation) [Mil+21] [Section 4, Eq. 3.]:

N
Ctn+1) = Y Tu- (1 —exp (—0uby)) - cn
" (3.6)

n—1
with T, = exp (Z —Uk5k>

k=1

12
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where §; = t;;1 — t; is the distance between adjacent samples along the ray. Equa-
tion 3.6 is trivially differentiable and reduces to traditional alpha compositing of the
transmission function with alpha weights a; = 1 — exp(—0;6;).

3.3. Sampling

Brute force dense evaluation of the neural radiance field on points along each camera
ray is inefficient, as free and occluded regions that do not contribute to the rendered
image are repeatedly sampled. This consideration is integral to most NeRF works,
beginning from the first publication [Mil+21], and continuing with two of the authors’
principal follow-up works [Bar+21; Bar+22]. Different strategies of performing intelli-
gent sampling have been proposed, that in some form adhere to the "coarse to fine"
strategy. This scheme draws inspiration from early work in volume rendering [Lev90]
and aims to increase rendering efficiency by allocating samples proportionally to their
expected effect on the final rendering.

To this effect, the "coarse" sampling entails collecting stratified samples in uniform
intervals over the ray throughout the entire volume. A forward-pass through an
MLP (initially a NeRF MLP, in the newest works a smaller proposal MLP) generates
weights over intervals from the densities (differential opacity), which, when normalized,
are treated as a piecewise-constant probability density function over the ray and its
intervals: interpreting the weights as proxies for the differential probabilities for the
event of ray termination. New samples are then drawn from this PDF for the "fine"
stage via inverse transform sampling, which are finally passed to a "NeRF-MLP", that
performs view dependant color and density inference for each point. See Figure 2.2 for
an overview of the general idea and sampling mechanism.

One significant design choice is whether the densities are sampled from the same MLP
as is the case in MipNeRF [Bar+21], or if the densities are generated by a smaller MLP
as in MipNeRF360° [Bar+22], that for a (3x) increase of speed, leads to a (33%) increase
in parameters, and a reported increase in accuracy, especially for fine structures.

3.4. Supervision

NeRFs are optimized from a collection of RGB images from well-calibrated cameras
with given poses and extrinsic. For synthetic experiments, the experiments are directly
trained with ground truth camera parameters. For real images, these parameters are
generally inferred from SfM algorithms (usually with COLMAP).

For each image n € N from the dataset, a ray r,,(t) is projected into the neural
volume from that camera’s center o,,. The ray goes through the center of its respective
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3. Neural Radiance Fields: Theory

pixel px, ; along the direction d. In total, there are i € [1, H - W] rays per image, and
the resulting rays, r(t) = o + td, are fully defined by the camera parameters and their
respective images. In the neural volume, the neural field is strategically (section 3.3)
sampled along the path defined by r,, ;. The colors and densities inferred at each sample
point are alpha composited and denote the predicted color for the pixel px,, ;.

The principal supervision signal for rays in initial works is a gradient descent on
a simple mean squared error loss function (MSE) between the predicted and ground
truth pixel value, although recently published MipNeRF360° found the Charbonnier
loss to lead to more stable results. This function was designed as a differentiable robust
loss function and effectively interpolates between L1-loss for deviations larger than
€, and L2-loss for deviations smaller than € (a parameter controlling the shape of the
resulting function). The color loss for a mini-batch of N rays is calculated as follows:

Low(e, @)=Y \/(cn—&y)2+e? (3.7)

neN

With € being set to a small value, usually € = 0.001. Further monocular supervision
signals relevant to this work are listed in Appendix B.

3.5. Positional Encoding

Finally, even though neural networks are universal function approximators [HSW89], it
became evident that networks operating directly on low dimensional inputs are biased
towards learning lower frequency functions [Rah+19]. Positional encoding is integral
to the ability of an MLP to regress complex scenes with high-frequency details from
low-dimensional inputs.

The core insight is that lifting inputs to an orthogonal basis in higher dimensions,
with high-frequency functions as said basis, enables the network to better model high-
frequency variations of the input signal. The first commonly used embedding for
coordinate networks was the in NeRF proposed Fourier feature embedding y(p), which
mapped inputs p € R to a higher dimensional space R?:

v(p) = (sin(2°7tp, cos(2°7tp), --- , sin(2F " 1;p), cos(2tmp) ). (3.8)

This function y(p) is used to encode viewing directions and point coordinates and is
applied separately to each of the three coordinates. The scene within the neural volume
must be normalized to lie in [-1, 1], as the periodic basis only allows bijection from RR"
to and from this interval.

Training an MLP with embedded point coordinates necessitates that every image is
taken at an equal distance from the object that they depict, and only allows alias-free
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3. Neural Radiance Fields: Theory

Figure 3.1.: NeRF samples and embeds discrete points (dots) along each pixel’s ray, ignoring
features such as ray interval length and the volume enclosed within, leading to
significantly degraded performance. Mip-NeRF instead constructs conical sections
from the ray intervals, which convey scale and enclosed volume to the MLP. Illus-
tration copied from the original publication [Bar+21]

reconstructions for images from virtual cameras at said distance, as the neural volume
is only trained on discrete paths and points. The obvious solution, i.e. super-sampling
pixels, is computationally infeasible and instead has been resolved by taking inspiration
from mipmaps in computer graphics.

The approach presented in [Bar+21], which they coined integrated positional encod-
ings, encodes featurized volumes (ray cones) rather than point coordinates, and has
shown to significantly reduce aliasing and increase accuracy at little computational
cost. Essentially, using featurized conical sections as inputs, rather than just points,
allows the network to reason about the size and scale of the inputs, resolving NeRF’s
insensitivity to scale and ameliorating most sources of aliasing.
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3D reconstruction from 2D images is a challenging problem as there can be numerous
3D configurations that can result in the same set of 2D images. In other words, the
problem is under-constrained and lacks a unique solution. This is because 2D images
only provide incomplete information about the 3D scene, limited to photometric traits
like texture, shape, and lighting conditions. As a result, reconstructing the complete 3D
geometry of a scene from 2D images can be challenging, especially when dealing with
complex scenes, occlusions, or noisy input data.

The main objective of this study is to enhance novel view reconstruction outcomes
by incorporating complementary monocular signals, such as depth- and normal maps,
along with the photometric supervision signal. This helps to constrain the spatial
positioning and surface orientation of objects in the depicted scene. To this end, we
present a simple loss formulation that is derived from statistical considerations that can
be easily tuned to work with synthetic and real data.

4.1. Depth Supervision with Statistical Weight Bounds

We assume a scene comprised of non-transparent objects. We model the scene with a
neural field, Fy : (x,d) — (¢, o), that maps input coordinates x and viewing directions
d to volume densities o(x) and colors c¢. Into the scene, we project a camera ray
r(t) = o+ td, and we model the depth D at which the ray terminates, as the expectation
of the distribution f(t) = T (t) - o(t), i.e. D = E[f(t)], with f(t) being the likelihood
that the ray stops at precisely t.

If we model f(t) as a Gaussian distribution f(t) = N (u,€2)!, then the expected
value E[T (t) - ()] is exactly the mode, i.e. the distribution is centered at y = D.
The corresponding CDF F(t) is easily found (in most statistics textbooks and also
implemented in PyTorch). This CDF is the opacity function F(t) = (1 — 7 (t)) and with
this in mind, can be expressed as the cumulative sum of ray weights w in the discrete
case. With (1 —7)" = T o in mind we find:

1Usually this Gaussian scale parameter is symbolically represented by ¢, but in this case, € is chosen to
distinguish it from the differential opacity (density) o(x) used to model the scene.
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F(O = 1) = /(:b(l — T dt

= (T(0) = T(t))
=(1—-7T(0 —ty)) constant density

Np
= 2 w;
i=1

In conclusion: With this assumption that f(#) can be modeled as a Gaussian, and by
knowing D and e, the weights along the ray through the neural field are fully defined
by the cumulative distribution function of the underlying (Gaussian) probability density
function.

With this knowledge, we set € as a hyper-parameter in a Gaussian that slightly
overestimates the scale of ¢(u,€?), which we are using to model f(t), and assign
®(u, €?) to the corresponding continuous CDF. The ray interval is then divided into
two regions for ray interval midpoints t;. The near region is denoted near : t; < D and
the far region denoted far : t; > D. The loss for interval-midsections t; € near is then a
simple mean squared error evaluated on ray weights w; that exceed the bound given
by ®(t; € near), and for interval-midsections t; € far we penalize weights w; which
subceed ®(t; € far).

Furthermore, if this assumption holds, then the empirical rule states that 99.97% of
the opacity that a ray encounters traveling through the neural field should lie within a
region of +3€g, i.e. the probability that the ray has not been absorbed at a depth of
D + 3eg is under 0.03%. By setting € to a small value, we can ensure concentrated and
compact surface presentations in the neural field, but must be careful to not constrict
the volume too much, as smaller €4 leads to steeper gradients in the optimization, and
further, we hypothesize that the expressiveness of neural fields stems partially from the
volume rendering of expansive surfaces, rather than ones with J-shaped densities.

For practical reasons it makes sense to divide the near region further, and here we
take inspiration from priors introduced in [Rem+22], who themselves followed [CL96;
Che+21; Mat+00], where we define {teupry : t < D — 3eq}, and redefine {t;eqr :
D —3ep <t < D}. The Loss term Lepr for the statistical weight bounds for the
optimization of parameters 6 in Fp : (x,d) — (¢, 0) can then formally be written as:

(4.1)

Lepr = /\emptyﬁempty + Ao Lo (4.2)

This re-partition of intervals allows for individual tuning of Aeupry and Ae. This
allows setting Aeppry >> Ao whereby densities in the empty region are strongly
penalized and without creating training instabilities from exploding gradients of loss

17



4. Method

Cumulative Sum of Ray Weights and Gaussian CDF ®(t)
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Figure 4.1.: Integrating over the likelihood f(t), that a camera ray r(f) traversing the neural field
Fy along t terminates at exactly ¢, produces the Gaussian CDF ®(t) if the densities
along f(t) are assumed to be normally distributed around D. The cumulative
sum of ray weights can then be supervised by bounds given by ®(t), where we
penalize weights exceeding ®(t) for {t,eqr : t — D < 0}, and for exceeding ®(t) for
{tfar :t—D >0},

incurred close to surfaces. With Tj as the number of indexes in each sum, the empty
loss is defined as

1

Eempty = = Z w? (43)
Ti ti€empty

With W; denoting the cumulative sum of weights w; up to including i, the loss term
for L4 is then defined as follows:

Lo=~ Y max{Wi—d(t),0)> + % Y max{®(t) - W01 (44)
L ticnear I tiefar
It should be noted that A scales the loss contributed by each interval over the entire
range linearly, while e controls the slope of the Gaussian CDF in a non-linear way,
and thereby the scale of how quickly deviations incur a penalty on the optimization.
As with most deep learning parameters, it is worth tuning €4 to the application, as
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setting it too low can lead to nonoptimal density distributions impacting performance,
while setting it too high makes benefits from depth supervision weaker. Finally, far is
set to being an open interval, as it encourages fully opaque surfaces in the vicinity of
the depth measurement, but we found that the impact over limiting it to a multiple of
€o was negligible.

4.2. Adaptation to Real Data

Real data generated through physical processes are never perfect, and as such, we
introduce a slight modification of the method. To model measurement uncertainty,
we introduce an offset . Instead of evaluating the bounds with one Gaussian CDF
centered at D, we evaluate for the bounds two separate Gaussian CDFs positioned at
D =+ 2e¢ as depicted in Figure 4.2, such that, within a tolerance of the estimated depth
uncertainty, the model’s predicted densities aren’t erroneously constrained.

109 — coF oD -pe.€?)
. CDF o(D + Be, €2)
£ .| ™= cumsum of ray weights
Z 0.
©
Q
2
a
~ 0.6
1S
=
(%]
(%
2 0.4
©
>
£
302

0.0 =

-6¢ -2¢ 0 2¢ -6¢
t-D

Figure 4.2.: To account for real-world sensor noise, and improper camera calibration, we adapt
the loss presented in Figure 4.1 by introducing a parameter 8, which acts as an
X-Axis offset and describes the expected measurement error. We extend near and
far regions by +pe respectively. By supervising points in near with the upper
bound given by ®(D — B¢, €?), and points in far with the lower bound given by
®(D + e, €?), the impact of measurement errors is effectively limited. In all real-
world experiments we set § = 2 and for synthetic experiments, we set § = 0. Lower
B generally leads to better results, if depth and camera data are well-calibrated and
accurate.
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4.3. Normal Supervision

We investigate methods to include supervision with normal maps as an additional,
complementary monocular cue. We evaluate supervising the networks density normals
ny(x) directly. To generate the density normals n,(x) we differentiate the densities,
generated by the NeRF-MLP at sampling locations along a ray, in respect to their input
coordinates x. This is formally written as: n,(x) = —Vxo(x). For the direct supervision,
we use the weighted euclidean distance between normalized normal vectors:

Lay, = Y willng(x) —nar(x)| (45)

Note that minimizing the euclidean distance between n,(x) and ngr(x), is related to
minimizing the cosine similarity as follows:

|A—B|*=(A—B) (A-B) (4.6)
= |A|>+ ||B||> —2(A - B) (polarization identity)
=2(1—cos(A,B)) (unit norm)

|A — B||? = 2Dist.os(A,B) when ||A| =|B| = 1. 4.7)

We also investigate if indirect supervision has a tangible effect on PSNR, by placing a
dense layer after the last layer of the NeRF-MLP to predict normals as an extra output,
as introduced in Ref-NeRF [Ver+22], denoted ny(x). This, according to the authors,
”..produces smoother normals than gradient density normals because the gradient operator acts
as a high-pass filter on the MLLP’s effective interpolation kernel “[Ver+22], and supervise:

Loy = Y Wil (x) = no(x)[|* + Y willmp(x) — nor(x) | (4.8)

4.4. Implementation details

Architecture and training. The architecture used for these experiments is a slightly
modified Mip-NeRF, where "coarse-to-fine" sampling has been replaced by two rounds
of sampling with a proposal MLP exactly as proposed in Mip-NeRF360° [Bar+22]. The
proposal MLP has 4 layers and 256 Hidden units, and the NeRF MLP has 8 layers and
256 Hidden units, the model in total has 835K Parameters.

We train at half-precision with a batch-size of 8192 and the Adam optimizer [KB14]
with standard PyTorch values for €,4,, = 1e~8 and B1 = 0.9 and B> = 0.999. The
learning rate follows the schedule suggested in Mip-NeRF360°, i.e. 512 warm-up steps,
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2¢~3 maximum learning rate, which is log-linearly annealed to 2¢~°> over the course
of training, with the maximum number of steps dependant on the number of training
views. All training takes place on a GTX2070 consumer GPU and takes from 30 minutes
to 12 hours depending on the scene.

Sampling. We collect 64 stratified samples linearly spaced in z-space, and the
inferred densities are normalized and re-sampled by inverse transform sampling (2
proposal rounds). From the final round of proposal probabilities, 32 samples are again
generated for inference by the NeRF-MLP. The weights @* in intervals f* from both
proposal-rounds k € {1,2} are supervised by thresholding the histograms as proposed
in Mip-NeRF360°. The bound function computes the sum of all proposal weights @* in
proposal intervals ¥ that overlap with interval T:

bound(t, w, T) = Z W (4.9)
j:Tﬂf}#@

Any interval that violates the bound given by w; < bound (t, W, T;), i.e. that has
surplus histogram mass in a given interval-range, is penalized. We bound for all
intervals and weights (T,w;) that are the result of the final forward pass through NeRF
MLP:

Lorop (t,w, T, W) = Z wi max (0, w; —bound (t, W, 7}))2 (4.10)
i 1

Loss. We supervise the network with the following total loss:

k
i

The hyper parameters for synthetic experiments are Ap,op = 1.0, €p = 0.03, Aeypry =
1.0 and Ap = 0.1 for few views (n < 12) and Agp = 0.01 for many views (n > 12). For
experiments investigating the benefits of normal map supervision we set A, = le™%,
and unless otherwise mentioned, set A, = 0 in all other experiments.

For real-world experiments, €¢ is set to be a subtle overestimate of the error in
registering the depth map, i.e. 0.5% - 1.5% of the depth maps value. Finally, lower
values for eg generally lead to more accurate depth inference, unless it underestimates
the measurement errors. A good rule of thumb is to increase or decrease A and €
together as they figuratively act like slope and bias.
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4.5. Datasets and Metrics

Synthetic experiments. We use the Blender dataset with ground truth camera parame-
ters and constant illumination introduced in NeRF[Mil+21]. The dataset is re-rendered
at 400x400 resolution with scripts, provided by NeRF’s authors, to generate ground-
truth depth- and normal- maps. We evaluate the average PSNR of novel views (test
views) in dependence on the number of views supplied at training (train views).

Real-world data experiments. We use scenes from ScanNet [Dai+17]. Scenes are
trained with 15 to 25 images per scene. As data preparation, we center-crop dark
borders (results from un-distorting images) and infer camera parameters (extrinsic and
intrinsic) via COLMAP.

We use the RGB-D ground truth data for pixels wherever available, and replace
missing measurements by predicting monocular depth- and normal- maps with the
help of a pre-trained monocular depth and normal estimator model: OmniData [Eft+21].
We fit and scale those depth maps by solving a least squares regression system for
valid pixels in the sensor’s depth map and update invalid sensor readings with the
transformed inferred values.

Evaluation and Metrics. For the evaluation of synthetic data, we compare the PSNR
(Peak Signal to Noise Ratio) of the novel views to the ground truth using common
methods that incorporate depth maps as a supervision signal for training neural fields,
as well as a baseline model without our proposed statistical weight bounds (SWB).
When evaluating the real-world dataset ScanNet, we calculate the mean square root
error (MSRE) of the reconstructed depth maps on valid pixels and assess the PSNR
and SSIM (structural similarity index measure) of predicted views in comparison to
previous studies. To address varying lighting conditions (as shown in Figure 4.3) we
also present our color-corrected reconstruction metrics.

4.6. Global Latent Optimization

The real-world scenes in ScanNet can show great photometric variations from image
to image, even when depicting the same objects (see Figure 4.3). This most likely
stems from the camera’s auto exposure or auto white balance being allowed to vary
between images. This makes photometric reconstruction an ill-posed task, as we are
not interested in modeling the most likely exposure of each pose, but rather want to
synthesize novel views that look consistent, pleasing, and believable.

To allow the model to disentangle viewing direction and camera exposure, we pass
the camera index into an Nx4 dimensional embedding layer during training (N is the
number of total training views). During the evaluation, we set this embedding to zero,
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Figure 4.3.: Real-world datasets can exhibit strong photometric variation when depicting the
same region in the same scene, leading to difficulties in synthesizing consistent
novel views and lower PSNR scores for the reconstruction of test views. To remedy
the impact of this effect, we embed a per-camera optimizable embedding at train
time, to disentangle an image’s camera exposure and the general scene illumination,
from the camera’s viewing direction. In addition, we additionally perform a least
squares linear fit from predicted images to ground truth images, to give a better
indication of reconstruction quality, and list them with the "color corrected" tag.

which gives us consistent lighting conditions and a pleasant appearance across all
validation views, that are close to the average lighting conditions.

Generating predictions like this produces pleasing and consistent results, but perform
poorly on PSNR. We adopt the strategy proposed in [Bar+22] and additionally evaluate
our "color-corrected"? novel views. We solve the least squares fit of RGB values from
predicted images to ground truth images, to better match the output images, and to
give a fairer comparison. Note that if we were interested in retrieving the exact lighting
conditions at the time the data was recorded, we could just optimize the camera’s
latent embedding at test time, but that is not the goal of this technique. We interpret
the color-predicted PSNR and SSIM results as a lower bound on the model’s true
reconstruction capabilities, as it is nothing more than an affine transformation of the
output images.

2Unless otherwise indicated the results presented are generated without color-correction.
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In this chapter, we evaluate the qualitative and quantitative benefits of training neural
radiance fields on RGBD(-N) data, i.e. to what extent the training of neural fields
can be enhanced by incorporating depth- and normal-map supervision as additional
monocular cues during training.

We demonstrate superior results and faster training speeds by incorporating depth
with the novel loss formulation derived in chapter 4. We first evaluate the method on
the synthetic Blender dataset presented in the original NeRF paper [Mil+21], and then
contrast it to popular methods for dealing with depth data in neural radiance fields,
specifically rendered depth, and depth carving from Urban Radiance Fields [Rem+22]
(see loss Appendix B for their respective definitions).

Further, we investigate methods to include supervision with normal maps as a
complementary monocular cue. We evaluate supervising the network density normals,
ie. ny(x) = —Vo(x) directly, and indirectly with an intermediate MLP, as introduced
in Ref-NeRF [Ver+22], denoted ny(x) (see Equation 4.8).

5.1. Synthetic Scenes

5.1.1. Investigating Depth Supervision

For initial tests, we use the synthetic Blender dataset and evaluate the average PSNR of
novel views (test views) in dependence on the number of views supplied at training
(train views). We demonstrate (Figure 5.1) that the presented method improves results
of novel views, regardless of the number of train views, with diminishing returns as
the number of train views becomes very large. Further, it allows for higher learning
rates and thus converges much faster, taking as little as 15 minutes on a consumer GPU
to achieve 23.8 Test-PSNR on the Lego Blender scene with only 3 input training views,
and using only a slightly modified Mip-NeRE

To compare the presented method with other works, we perform a binary random
search to find a suitable configuration for loss hyper-parameters A; for the few view
setting (n < 12). For the simple Rendered Depth, we only have to find an acceptable
Ap to which we commit 5 trials, for Urban Radiance Fields we commit 40 trials, as it
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features a plethora of hyperparameters that all interact'. For our presented method, we
find that the parameters are fairly insensitive and set them as described in chapter 4.

MAX-PSNR by method and Nr. of images

40
I mipnerf w/ statistical weight bounds 36'96 p
35 | B mipnerf 334
31.5 24
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QZC 26.4
0 23.8 5.6
o 25 A
< 21.8 =
<
= 0.5
20 A
15 6.9 o
15 A

1 2 3 4 6 8 12 20 100
No. Training Views

Figure 5.1.: Contrary to other common methods for using depth data in neural fields, our
proposed bounded weight loss improves reconstruction results for any number
of training views. Even with as few as two views we can attain a satisfying 3D
consistent result.

We demonstrate the advantages of our method on synthetic data and show that it
quantitatively (Table 5.1) and qualitatively (Figure 5.2, Figure 5.3) outperforms prior
work aiming to incorporate depth map data in the training of neural fields. We find
that ours is the only method that consistently improves test PSNR with RGB-D data,
contrary to previous works that improve PSNR of reconstruction at fewer views and
negatively impact PSNR of reconstructions when the scene is well defined.

Figure 5.2 provides insight into failure modes of current approaches. Supervision
with the rendered depth leads to nonsensical predictions, i.e. volumes of white densities,
floaters and, generally in areas that do not contain meaningful information, to minimize
the loss incurred when summing over the weighted intervals. URF reduces the solution
space too much and does not consider that objects in 3D are expansive, leading to
inconsistent geometries in novel views when supervision is sparse.

Y emax, €mins Aempty, Anear, and €, € where the latter two signify the rate and mode (linear, exponential)
of annealing the e-interval
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PSNR
No. Views | 3 | 6 | 100

Mip-NeRF | 17.73 | 23.87 | 36.65
Rendered | 20.32 | 25.90 | 35.09
URF 20.09 | 26.12 | 36.36
Ours 23.81 | 27.91 | 36.96

Table 5.1.: Comparison of model performance. While depth supervised methods (Rendered
depth, Urban Radiance Fields [Rem+22]) improve results over the base model for
few views, they adversely affect reconstruction quality when supervision is dense.
Our loss by contrast consistently improves reconstruction results.

We hypothesize that our method encourages correctly initialized densities in regions
that are multiview consistent, while simultaneously discouraging floaters and density
in general in regions that we know to be empty. The key advantage over URF’s formu-
lation is the consideration of bounded intervals that let the network retain expansive
volumes that are expressive and multiview consistent, rather than constricting entire
volumes, supervised by discrete pixel-wise quantities, to predict é-shaped densities.

Rendered URF Ours

Mip-NeRF

B

Figure 5.2.: Qualitative inspection of predicted depth maps during 3-view training shows
how different densities are enforced. Mip-NeRF assigns irregular densities that
purely minimize reconstruction loss from 3 views, and therefore don’t have to
be constrained to surfaces. Rendered Loss assigns semi-transparent and white
densities everywhere to ensure the weighted training rays sum to their respective
depth values. URF overfits to training views and enforces é-shaped densities,
while ours models very fine geometry (see holes in the Lego model) with minimal
supervision.
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Figure 5.3.: Qualitative inspection of validation views during training with 3 views shows major
improvements when training with depth maps for all of the studied methods. While
Mip-NeRF struggles to constrain densities to sharp regions, the alternatives present
richer details. When trained with the Rendered Depth as supervision, the model
cannot reconstruct fine geometries (e.g. holes in the tractor arms), while training
with depth carving (URF) enforces J-shaped densities and leads to visible artifacts
in novel views. Our method creates plausible and multiview consistent novel views
with only 3 training views as supervision, by correctly localizing densities in space
and allowing for expansive surfaces. Even with expansive surfaces it is able to
model fine details (holes in the tractor) and shows a massive increase in convergence
speed.
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5.1.2. Benefits of Normal Supervision

With our architecture, a slightly modified Mip-NeRF, we find little evidence that
supervising with normal maps in addition to depth consistently increases test-PSNR,
but note a 50% increase in training time, from calculating an additional backward-pass
through the network to compute n,(x). Supervising the gradient normals indirectly, by
training a network to predict the density normals, ny(x), leads to a stronger degradation
of performance than supervising n,(x) directly.

It is possible, that changing the base model to the architecture presented in Ref-NeRF,
where ny(x) is physically motivated and used to correctly model reflections in shiny
blender, a dataset populated with non-Lambertian materials, could make use of said
normals to enhance reconstruction performance. [Yu+22] has found normal maps to
be a useful monocular cue that improved reconstruction quality, but they model the
scene as an SDF field, with J-thickness surfaces, where the normals directly correspond
to the gradient of the underlying field. It is possible that this, or other architectural
innovations, extracts greater benefit from the information provided by normal maps.

PSNR
No. Views 3 6 100

RGB 1773 23.87 36.65
RGB-D 23.81 2791 36.96
RGB-N, 17.62 2399 -
RGB-D-Ng 21.31 2752 36.70
RGB-D-N, 22.12 28.86 36.88

Table 5.2.: Comparison of model performance. Our proposed depth loss does not convincingly
profit from an additional term for normal maps when views of the scene densely
overlap but shows a slight increase in performance for semi-sparse view-overlap.
Training on RGB-N inputs alone is inferior to RGB-D but slightly better than the
just RGB baseline. Supervising volume density with normal maps could offer
downstream benefits if the normals predicted are used for inference of secondary
effects (e.g. reflections).

While not directly beneficial to novel view synthesis, supervising the model to predict
normals 7y with normal maps lets the model learn accurate surface normals? at low
penalty (< 1% PSNR). These normals might be interesting for downstream tasks like
reflections and relighting of neural scenes.

2see Appendix C for an example of MLP-predicted surface normals
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5.2. Real World Scenes

There are several differences between real and synthetic datasets that are important
to consider when training a neural radiance field, which could impact performance
negatively left unaccounted.

¢ Diversity: Real images can have large variability in terms of lighting conditions,
background, and object appearance.

* Quality: Real images may contain noise, blur, or other artifacts.

¢ Inaccurate: Camera parameters retrieved with COLMAP may be inaccurate and
lead to visual artifacts in NeRF.

* Defective: Depth sensors are imperfect devices and are usually accurate up to a
fraction (= 1%) of the measured value (see Figure C.5).

¢ Incomplete: Sensors are bounded to a minimum and maximum possible distance
they can measure. Pixels depicting non-Lambertian materials, transparent media,
and out-of-range objects give invalid readings and lead to an incomplete depth
map.

5.2.1. Ablations

With this in mind, we adapt our method to account for inaccurate camera initializations
and sensor error in depth map measurements by introducing the parameter p =
2eq (Figure 4.2). Invalid depth pixels are replaced by the affine-transform of a depth
map predicted from a Monocular Depth Estimation network [Eft+21](see Appendix C
for an example), which we refer to as "Stitching". Further, we follow the example of
other works [Bar+22; Mar+21] and introduce a low-dimensional per camera embedding
to model varying camera exposure and white balance (see section 4.6 for details).
Further, we list metrics for "color-corrected" images as described in section 4.6. We
ablate and compare our design choices in Table 5.3.

Our proposed method generates consistent and pleasing novel views and scores high
on all metrics, especially those less sensitive to matching the lighting conditions of the
validation image (RGB-Normalized and Depth RSME).

No-GLO performs best for SSIM and uncorrected PSNR, but qualitative inspection
of the generated views reveals rapid lighting changes when panning the room, as
the model has learned to correlate viewing direction and most likely illumination,
effectively gaming the validation metrics. Such a model seems of little use for our
application, even if it performs better on color-dependant metrics because it produces
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5. Experimental Results

Depth ~ RGB-Normalized

Method PSNR 1 SSIM1T RSME | PSNR{T SSIM 1
No-Depth 19.50 0.6898  0.6307 21.40 0.6926
Rendered Depth ~ 20.57 0.7341  0.0691 23.20 0.7368
No-GLO 22.10 0.7632  0.0803 23.99 0.7704
No-p 21.06 0.7486  0.0699 23.89 0.7524
No-Stiching 21.21 0.7524 = 0.0453 23.98 0.7523
No-Empty 21.18 0.7532  0.1652 24.03 0.7565
Ours 21.18 0.7524  0.0489 24.08 0.7574

Table 5.3.: Ablation of model design and their effects on performance. Color-legend: red/best,
orange/second best, and yellow /third best-performing model. Our proposed method
performs well across all metrics, especially metrics less sensitive to the lighting
conditions of the test set. Evaluation on ScanNet-Scene0710_00.

unappealing and inconsistent novel views (see Appendix C for examples of failure
cases for No-GLO and No-Stitching).

Other well-performing variants are more difficult to train and often exhibit some
mode of failure. Without stitching of depth maps (No-Stitching), scenes with very
incomplete depth maps, or with objects in front of distant backgrounds, do not converge,
as densities are not correctly initialized. The No-Empty variant is littered with floaters
that negatively affect its depth RMSE.

We want to emphasize that the normalized test metrics should be seen as a lower
bound on true model performance and that test-time optimization of the GLO embed-
ding would perform even better. Indeed while the gaming of test metrics is of little
practical use, the idea itself allows for artistic expression, as we can effectively change
the scene’s lighting conditions and the illumination of objects depicted by interpolating
in the camera’s embedding space, which concurrent works do explore [Mar+21], and
which might be an attractive direction for future work.

5.2.2. ScanNet: Novel View Synthesis Results

We evaluate our best model on ScanNet with identical data and poses that were
provided by Dense Depth Priors [Roe+22]. This allows us to directly compare it to
their tabulated benchmark, although we have to discern the relative improvements
stemming from using Mip-NeRF over NeRF (see Table 5.3 for the impact on scores
from architectural improvements), and from our novel loss formulation over prior work.
We demonstrate that our model outperforms prior work by a large margin, especially
in metrics insensitive to photometric variations between test and training views. A
core difference however is that most of these prior methods use sparse depth as input,
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5. Experimental Results

although this anecdotally only presents a marginally more challenging setting, because
we only need a scale and offset parameter to initialize a good proxy via "Stitching".
The normals and depth maps inferred by our model are multi-view consistent and
extremely accurate (Appendix C for visualizations), the calculated RMSE on valid depth
map pixels is close to the sensor’s relative inaccuracy (= 1%) and, could be useful for
downstream tasks.

Depth  RGB-Normalized
Method PSNR 1+ SSIM 1T RSME | PSNR 1

NeRF[Mil+21] 19.03 0670  1.163

DS-NeRF[Den+22] 2085 0713 0447

NerfingMVS[Wei+21] 1629  0.626  0.482
DDP[Roe+22] 2096 0737 0236 22.303
Ours 2133 07923  0.0753 23.89

Table 5.4.: Evaluation of our model against the tabularized benchmark of methods on the
ScanNet dataset provided by [Roe+22](includes Scenes:0710_00, 0758_00, 0781_00).
Our model outperforms prior work across all metrics, but especially for depth
prediction.

5.3. limitations

Our proposed method does little to compensate for noisily initialized cameras and
in that regard fails in the same way previous NeRF works do. A promising future
research direction is the simultaneous optimization of cameras and scene as presented
in other works [Lin+21]. In addition, specular reflections, bright light sources, and
non-Lambertian materials are poorly reconstructed and often show up as artifacts on
validation views. This usually requires dense supervision to be accurately modeled,
and a change of the architecture, on which other works have shown tremendous
progress [Ver+22]. We also note that the performance of models can be ambiguous
when optimizing for color-sensitive metrics, but it is a flaw that can be remedied by
careful modeling of camera behavior during training or dataset acquisition.

Finally, we see less beneficial impact of normal map supervision than concurrent
work [Yu+22], which might be due to architectural differences*, but this fact leaves

3Dense Depth Priors optimize a per camera latent embedding at test time

4The authors of mono-SDF regress an SDF instead of a neural radiance field. Additionally, they regularize
that SDF to have unit gradient norm with the Eikonal equation, where they can directly supervise both
predicted surface normals and norm with normal supervision. SDFs are also a smoother approximation
than NeRFs, which might lead to more stable training
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5. Experimental Results

room to speculate that there may be some way of making use of normal supervision
for neural radiance fields.
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6. Conclusion

In this thesis, we introduce a novel loss formulation for RGB-D data, based on the
principles of neural radiance fields and a Gaussian modeling of the likelihood for
the ray termination in neural volumes. Our work directly addresses deficiencies of
prior work that use depth maps as supervision for the training of neural radiance
fields. The formulation is easy to understand, the code is simple to implement, and the
hyper-parameters are effortlessly and robustly tuned.

We found spurious evidence that combined normal- and depth map supervision
provides benefits for sparse-view supervision, but note that the performance penalty
for normal supervision is typically insignificant. It may be worthwhile to incorporate
normal supervision if downstream applications or architectural changes can benefit
from predicted normals, but find little use for Mip-NeRFs theoretical framework.

We find that our presented method addresses a particular subset of issues with
real-world data, i.e. depth uncertainty and expansive volumes, but that there is still
much to do to make NeRFs robust to real-world data. We think that room-scale novel
view reconstruction would benefit greatly from more accurate camera initializations,
or a more robust framework that jointly optimizes cameras and neural radiance field.
NeRFs are also ill-suited for the photometric variations common to indoor datasets,
and we hypothesize that frameworks predicting or modeling camera behavior could be
beneficial to modeling real-world scenes.

We hope that our findings here may be of use for future work aiming to improve the
training of NeRFs with additional monocular cues.
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A. Evaluation Metrics

A.1. MSE and RMSE

Mean Squared Error (MSE) is a widely used loss function for regression problems in
machine learning and computer vision. MSE measures the difference between the true
target and predicted values by computing the mean of the squared differences between
the two sets of values. The MSE loss is used to quantify the quality of the predictions
and to guide the optimization process in machine learning models.

Mathematically, given a set of true target values t; with i € [1, .., N| and corresponding
predicted values y; the MSE is defined as follows:

1Y >
MSE = — ) (ti — i)
N =

The use of MSE as a loss function is motivated by its simplicity and its ability to
provide a single scalar value that summarizes the quality of the predictions. The MSE
loss is sensitive to outliers and is often used in combination with other loss functions to
balance the trade-off between robustness and sensitivity.

Similarly the RMSE is defined as follows:

1 N
RMSE = , | = ) (ti —yi)?
J N ;( i~ Yi)

The use of RMSE as a performance metric is motivated by its ability to provide a
more interpretable measure of the prediction ,error in terms of the original units of
the target values, making it easier to compare the performance of different models on
different datasets.
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A. Evaluation Metrics

A.2. PSNR

PSNR (Peak Signal-to-Noise Ratio) is a widely used quality metric for image and video
compression and restoration. PSNR measures the similarity between a reference and a
distorted image by computing the mean squared error between the two images and
then transforming this error into decibels (dB) for its logarithmic scale. The higher
the PSNR value, the more similar the two images are, and the better the quality of the
distorted image. Mathematically, given two images A and B, PSNR is calculated as
follows:

MSE

where MAX is the maximum possible pixel value for the given image format (for
example, 255 for 8-bit grayscale images).

The use of PSNR as a quality metric for image and video compression is motivated
by its ability to provide a simple, easily interpretable measure of image quality that is
widely used in both academia and industry. Its popularity is due in part to its simplicity
and its ability to provide a single scalar value that summarizes the quality of an image
or video.

AX?
PSNR(A, B) = 10log,, <M >

A.3. SSIM

SSIM (Structural Similarity Index) is another commonly used image quality metric that
measures the similarity between two images by comparing the structural information in
the images. SSIM takes into account not only the mean and variance of the image pixels,
but also their cross-correlation, which helps to capture the spatial relationships between
pixels. Mathematically, given two images A and B, SSIM is calculated as follows:

(2uapp +c1)(204,8 + c2)
(W% +u3 +c1) (03 + 03+ )

where pa, pp, 04, 0, and oy p are the local mean, standard deviation, and cross-
covariance between the two images, respectively, and ¢; and c; are constants to ensure
that the SSIM index is well-behaved.

The use of SSIM as a quality metric for image and video compression is motivated
by its ability to provide a more accurate and perceptually meaningful measure of
image quality than simple mean squared error metrics like PSNR. It is widely used in
academic research and industry applications and has been shown to provide a better
correlation with human perception of image quality than PSNR.

SSIM(A, B) =
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B. Loss Functions

B.1. MSE RGB Loss

Standard NeRF pipelines use a MSE loss on predicted pixel colors & and ground truth
pixel colors ¢; for every ray i in a mini-batch of N rays:

N
L12-cotor(€,8) = ) _(ci = &)? (B1)

B.2. Rendered Depth

The rendered depth d is calculated as the dot product between ray intervals t; and ray
weights w; for every ray i in a mini-batch of N rays. The loss is then the MSE loss over
all rays in the batch:

N
Lio—aeprn(d, d) = Y (di — wit;)? (B.2)
i=1

B.3. Urban Radiance Field: Depth Carving

L= Aszdepthﬁmfdepth + Anear Lear + )\Eempty (B.3)

zZ—€ 5
n +€

Lyear = /; (W(t) - g(t - Z))zdt

—€

with G(t): Gaussian(0, (€/3)?)

(B.4)
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C. Visualizations
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C. Visualizations

Figure C.1.: Failure mode: Inconsistent looking views without per-camera embedding. The
algorithm games the train PSNR by predicting illumination conditioned on viewing
direction. Also visualizes an incorrectly initialized camera from COLAMP, leading
to artifacts in the reconstruction.
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C. Visualizations

Figure C.2.: Failure mode: Without stitching (top) the network fails to reconstruct scenes with
high z-axis differences. Stitching (bottom) allows for correct initialization and helps
the model to predict accurate geometries. From top to bottom: GT, Pred, GT, Pred.
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C. Visualizations

Figure C.3.: Algorithm predicts extraordinary high precision depth and normal maps that could
be used for downstream tasks or that could serve as better depthmap for iterative
training. From top to bottom: GT, Pred, GT, Pred.
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C. Visualizations

KT

Figure C.4.: Training on 100 views for Lego Blender for RGB-D-N methods. Top: density
normals (ny) directly supervised. Bottom: Density normals indirectly supervised
via MLP (ng). From top to bottom: GT, Pred, GT, Pred.
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C. Visualizations

Figure C.5.:

Structure Sensor Depth Precision
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Precision [mm]

1 L 1 1 1 1

400 500 1000 1500 2000 2500 3000 3500
Observed Depth [mm)]

Sensor precision as a function of distance according to manufacturer specifica-
tions [MOc14]. This is the sensor used in the creation of the ScanNet dataset, error
values should be interpreted as a lower bound on measurement error and don’t
consider distortion effects or user inexperience.
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